Game Scripting Mastery - Books24x7.com - Referenceware for Professional s Page 1 of 38

o ChapterB[Iintegration:[WsingExistingScripting[Systems
GHAME Game[ScriptingMastery
SCRIFTING
s ERES Rl Dy[Alex[Varanese

ﬁ PremierBress © 2003

Previous & MNext

Lua (And Basic Scripting Concepts)

The first stop on your scripting language tour is the quaint little town of Lua. Lua is a simple, easy-to-use language
and scripting system designed to extend any sort of program by giving it the capability to load and execute
optionally compiled scripts (which, really, is the goal of virtually any scripting system). Lua the language is
paradoxically characterized by both its basic and straightforward syntax, as well its understated but powerful
capability to be expanded significantly by the only non-primitive data structure it supports, the table. Don't let its
mild-mannered appearance fool you, however; Lua's been put to good use in such commercial games as MDK2
and Balder's Gate. It can definitely pull its weight when it has to. Lua the scripting system is equally clean and
easy to use; it comes as a single static library coded in pure C and ready to be dropped into any host application
for some hot, steamy scripting action.

Before getting into the details of how to write scripts in the Lua language, have a look at the components that the
Lua system provides.

The Lua System at a Glance

| think the real beauty of the Lua scripting system is its simplicity. When you initially download the package, you
won't find billions of scattered files and executables. Instead, you'll find the include files and libraries needed to
link Lua into your host application, as well as a small handful of utilities. That's all you need, and that's all you get.
Of course, you can find Lua on the included CD under the Scri pti ng Systemns/Lua/ directory.

The Lua Library

The Lua library is composed mainly of two files: @ Jua.liband @ lua. h.The library in most respects follows
the archetypical outline in that it provides a clean API for initializing itself and shutting down, as well as functions
for loading scripts, executing them, and building the function call interface that will let them talk back and forth
with your host application. I'll get back to the details of how to use this library later.

The | uac Compiler

Lua comes with an easy-to-use command-line driven compiler called | uac. Typing | uac at the command prompt
will display the program's usage info. To compile a script, simply type:
| uac <Fil ename>

where Fi | enane is the name of the script. The script will be compiled into a file called | uac. out by default, but
this can be changed with the - 0 switch. For example, if you have a script called t est . | ua that you want
compiled to a file with the same name, you type this:

luac -o test.out test.lua

What may surprise you about all this, however, is that you don't ever actually need to use the | uac compiler in
order to use the scripting system. Scripts written in Lua can be loaded directly by the Lua library and will be
compiled on-the-fly, at the time they're loaded. This is a nice feature because it allows you to immediately see the
results of your script code; you don't have to waste any time on an intermediate compiling step, and you don't
have to manage two filenames. The downsides, however, include the fact that you won't get particularly
meaningful compile-time errors when your compiling is done at runtime. Because your game (or whatever the
host application may be) will be in control of the screen at the time, Lua won't be able to print out a list of syntax
errors, for example. The other problem is that loading scripts will now be somewhat slower, as Lua will have to
spend the extra time compiling it then and there.

So, | uac is generally a good program to have around. Not only does it let you compile your scripts ahead of time

http://www.books24x7.com/book/id 6929/viewer r.asp?bookid=6929& chunkid=786742672 9/13/2005

http://www.books24x7.com/book/id_6929/viewer_r.asp?bookid=6929&chunkid=786742672

Game Scripting Mastery - Books24x7.com - Referenceware for Professionals Page 2 of 38

for much faster loading at runtime, but it also provides you with the same level of compile-time error information
that you'd expect from any other compiler. Another advantage is that you won't have to distribute the source to
your scripts with your game; instead, you can just release the compiled binaries, which aren't particularly easy for
malicious gamers to hack, and also take up less space. In other words, you don't have to use the compiler, but
you will most likely want to (and definitely should anyway).

The | ua Interactive Interpreter

Another utility that comes with Lua is the interactive interpreter. This useful little program, also accessible from the
command prompt, simply displays the following upon invocation:

>

Although the interface is about as friendly as the infamous DEBUG utility that ships with MS-DOS, the program lets
you immediately test out blocks of Lua code by typing them directly into the interpreter and seeing the results in
real time (hence the "interactivity"). | haven't discussed the syntax of Lua yet, but the following should be pretty
self-explanatory. For example, if you were to type the following:

> X = 32

>Y = 64

> print (X +Y)

You'd see the following output:
96

The last piece of information regarding the | ua interactive interpreter worth mentioning is that it can also be used
to immediately run simple scripts without the need to embed the @] ua. li b runtime environment into a C
program. Simply call | ua with a filename as the single command-line parameter, like so:

lua my_script.lua

and it will attempt to execute and print the output of the script. In addition, | ua will provide the same level of detail
in compile-time errors as | uac will, which can be useful. Lastly, scripts running inside the | ua interpreter are
automatically given a special pri nt () function, which can be used to print values to the screen, much like
printf () in C. Even though | haven't discussed Lua syntax yet, the following should be pretty self-explanatory:

print ("Hello, world!");

Running this in | ua, strangely enough, produces the following output:
Hel | o, world!

Keep this function in mind as you read through the following sections.

Tip You'll notice that the interpreter seems to evaluate your statements as soon as you press Enter, even if
they're supposed to be part of a larger construct such as an if block. To enter a full block of code without
immediately executing it as it's typed, simply follow each line in the block with a backslash (\), much like a
multi-line #define macro in C.All of the code will be executed at once after the first non-backslash-
terminated line is entered.

The Lua Language

Lua as a language is simple and straightforward. It won't take long to learn the syntax and semantics behind it,
and once you have them down, you'll find it elegant and easy to use. The syntax somewhat resembles a mixture
of C, BASIC, and Pascal, resulting in a no-frills look and feel that, although not a perfect C clone, should still be
an easy transition to make when switching from game engine code to script code. This chapter refers to Lua 4.0,
the latest official release at the time of this writing.

The interactive interpreter | mentioned in the last section will be extremely useful during the next few pages; if you
really want to follow along, start it up and play with some of the language examples that are discussed. It's the
best and fastest way to get really familiar with how Lua works. | highly recommend it.

Comments

I like to introduce comment syntax first when describing a language, because it generally shows up in the code
examples anyway. Lua's single comment type is denoted with a double-dash:

http://www.books24x7.com/book/id 6929/viewer r.asp?bookid=6929& chunkid=786742672 9/13/2005

http://www.books24x7.com/book/id_6929/viewer_r.asp?bookid=6929&chunkid=786742672

Game Scripting Mastery - Books24x7.com - Referenceware for Professionals Page 3 of 38

-- This is a conment.

Just like the / / comment in C++, Lua's comments cause everything from the double-dashes to the end of the line

to be ignored by the compiler. Lua has no provisions for block comments, so multi-line comments must be broken
into single lines manually:

-- This is the first line of a coment,
-- which is continued down here,
-- and finished here.

It's a bit of a hassle, but oh well. :)

Variables

Like most scripting languages, Lua is typeless. This means that any variable can hold any value of any type at
any time, as opposed to languages like C, which force you to declare a variable of a given type and stick to that
type throughout the variable's lifespan. Also unlike C, Lua variables need not be officially declared. Rather, a
variable is brought into existence at the time of its first assignment. However, as you'll see, this initial assignment
is restricted to some extent in many cases and is often considered a somewhat "implicit" declaration. More on this
later.

Identifiers in Lua follow the same rules that exist in C—valid identifiers are sequences of letters, numbers, and
underscores that begin with a non-numeric character (meaning a letter or underscore). ldentifiers are also case-
sensitive, so nyvar , nyVar , MyVar , and MYVAR are all considered different variable names.

Because variables need only be assigned to be declared, the following block of code would declare and initialize
two variables, X and Y:

X = 4096 -- Declare X and set its value to 4096

Y = "Hello, world!" -- Declare Y as a string containing "Hello, world!"

Caution Avoid creating identifiers that consist of an underscore followed by an all- caps string, such as
_I DENTI FI ER.This convention is used internally by Lua for its own use, and the possibility of a
future version of the language defining the same identifier you've used in your scripts may potentially
break your code. Besides, they're ugly anyway.

This little example also illustrates another quirk of Lua's syntax: that semicolons aren't required to terminate lines.
However, the semicolon can still be used and is still required in the case of statements that span multiple lines.
Consider the following:

MyVar0 = 128 -- Valid statenment; sem col ons are optional.
MyVarl = 256; -- Al'so valid; senicolons can be used if preferred.
print (
"This is along linel"
); -- Valid, multi-line statenents are all owed as | ong
-- as the sem colon is present.
print (
"So is this!"
) -- Invalid, multi-line statenments nust end with ';'

Even though variables only need to be assigned to be declared, they still can't actually be used as arithmetic
expressions without being given some sort of initial value. This is because all variables are assigned ni | before
their first assignment, which doesn't make sense in the case of math operations. For example:

U = 1024;

V = 2048;

print (U+ V);

print (U+ V + W);

This would produce the following:

3072
error: attenpt to performarithmetic on global 'W (a nil val ue)
stack traceback:

1: main of string "print (U+ V);

at line 4

http://www.books24x7.com/book/id 6929/viewer r.asp?bookid=6929& chunkid=786742672 9/13/2005

http://www.books24x7.com/book/id_6929/viewer_r.asp?bookid=6929&chunkid=786742672

Game Scripting Mastery - Books24x7.com - Referenceware for Professionals Page 4 of 38

The first line of the output is the sum 3072, just like you would expect, but the following lines are an error
message letting you know that Wcannot be used to perform arithmetic. I'll discuss ni | in more detail in the
following section.

Tip Even though it's optional in most cases, | suggest using semicolons to terminate all statements in Lua
anyway. Not only does it make the language seem that much more C/C++ like, but it also makes your
code clearer and more robust. If you find that a given statement is getting too long and want to break it
into multiple lines, having a semicolon already in place will make sure you don't forget to add it afterwards
and wind up with a compile-time error. It's just a good rule of thumb to stick with.As a C and/or C++
programmer, it will be a reflex anyway.

The last issue of variables to cover now is the concept of multiple assignment, which Lua supports. Multiple
assignment allows you to put more than one variable on the left side of the assignment operator, like so:

XY, Z=2, 4, 8

After this line executes, X will equal 2, Y will equal 4, and Z will equal 8. This left-to-right order allows you to tell
which identifier will receive which value. Multiple assignment works for any sort of assignment, so you can use it
to move the value of one set of variables into another as well:

U Vv, W= X Y, Z

Print (U V, W);

Which will produce the following (assuming you're using the same X, Y, and Z you initialized in the last example):
2 4 8

If you're anything like me, the first thought you had when you saw this form of assignment notation was "what
happens if you don't provide an equal number of variables and values on both sides of the assignment operator?"
Fortunately, in another example of Lua's robust nature, this is handled automatically. In the first case, if you don't
provide enough values on the right side to assign to all of the variables left side, the extra variables will be
assigned ni | :

X, Y, Z =16, 32;

This will assign X 16 and Y 32, but Z will be set to ni | . This even works in cases when the extra variable has
already been initialized. For example:

U V, W= 256, 512, 1024;

print (U V, W);

U V, W= 2048,

4096; print (U, V, W);

Even though Wwas assigned a value in the first assignment, which will be visible in the output of the first pri nt
() call, the second assignment will replace it with ni | :

256 512 1024
2048 4096 nil

In the second case, where there aren't enough variables on the right side to receive all of the values on the left,
the unused values will simply be ignored, so a line like this:

X, Y = 8192, 16384, 32768, 65536;

is perfectly legal and will only assign X and Y the first two values. The last two variables will simply vanish without
a trace, much like Paulie Shore's career.

Overall, multiple assignment is a convenient shorthand but definitely has potential to make your code less-than-
readable. Only use it in cases when you're sure that the code is clearly understandable, and try not to do it for too
many variables at once. Don't try to get cute and impress your friends with huge tangles of multiple assignment; it
will only result in error-prone code. One good use of the technique; however, is swapping two values in one line

easily:

X = 16; -- Declare some vari abl es

Y = 32;

print ("Unswapped:", X, Y); -- Print them out

X Y=Y X -- Swap themwith nultiple assignnment
print ("Swapped:", X Y); -- Print the swapped val ues

This will produce the following:

http://www.books24x7.com/book/id 6929/viewer r.asp?bookid=6929& chunkid=786742672 9/13/2005

http://www.books24x7.com/book/id_6929/viewer_r.asp?bookid=6929&chunkid=786742672

Game Scripting Mastery - Books24x7.com - Referenceware for Professionals Page 5 of 38

Unswapped: 16 32
Swapped: 32 16
Data Types

Now that you can declare and use variables, you're probably interested in knowing what you can stuff into them.
Lua supports six data types:

= Numeric. Integer and floating-point values. Unlike C, these two types of numeric values are considered the
same data type.

m String. A string of characters.

m Function. A reference to a formally declared function, much like a function pointer in C (but simpler to use
and more discreet).

m Table. Lua's most complex and powerful data type; tables can be as simple as associative arrays and as
complex as the basis for more advanced data structures like linked lists and classes.

m Userdata. A slightly more obscure data type that allows C pointers to be stored in Lua variables for a more
tight integration into the host application. Userdata pointers correspond to the voi d * pointer type in C. |
won't be covering this data type.

= nil. The simplest data type by far, ni | 's only job is to be different from every other value the language
supports. This means it makes a good flag value, especially when you want to mark something as
uninitialized or invalid. In fact, any reference to a variable that hasn't been directly assigned a value will equal
ni I .nil is also the only concept of "false- hood" the language supports. In other words, ni | is like a more
robust version of C's NULL. This is consistent with what you saw in the last section when you tried adding a
ni | value to two integers, which is illegal in Lua. This is an important lesson: ni | is false, but it is not equal
to zero in a numeric or arithmetic sense. This is why arithmetic expressions involving ni | variables don't
make sense and result in a runtime error.

If you happen to have the Lua interpreter open at the time, try using the t ype () function to examine various
identifiers. The t ype () function returns a string describing the data type of whatever identifier is passed to it, so
consider the following:

print (type (256)); \

print (type (3.14159)); \

print (type ("It's a trap!"));

Upon pressing Enter, you should see the following output:

nunber
nunber
string

Right off the bat, the numeric and string types should be a snap, and even the function type is pretty simple when
you think about it. ni | is easy to grasp as well, and the User dat a type is beyond the scope of this book so |
won't be discussing it any further. That leaves you with tables, which is good because they deserve the most
explanation.

Before moving on, however, I'd just like to quickly mention one last aspect of Lua's data types: coercion. Coercion
is when one data type is cast, or coerced into another for the sake of executing an expression. For example,
numeric values and strings can be used interchangeably in a number of expressions, like so:

print (16 + 32);

print ("16" + 32);

print (16 + "32");

print ("16" + "32");

Each of these pri nt () calls will output the numeric value 48. This is because whenever a string was
encountered in the arithmetic expression, it was coerced into its numeric form. Lua recognizes strings that can be
converted meaningfully to numbers, like the previous ones. However, the following statement would cause an
error:

print (16 + "32" + "Alex");

Note Although I'm sure you've picked up on this already, I'd just like to make sure that you're clear on the

http://www.books24x7.com/book/id 6929/viewer r.asp?bookid=6929& chunkid=786742672 9/13/2005

http://www.books24x7.com/book/id_6929/viewer_r.asp?bookid=6929&chunkid=786742672

Game Scripting Mastery - Books24x7.com - Referenceware for Professionals Page 6 of 38

print () function. print () will print any value passed to it, as well as the contents of any identifier.
This is a special function built in to the version of Lua running in the interpreter to allow immediate
feedback while coding interactively.The function also allows you to pass it comma-delimited lists, the
output of which will be aligned with tab stops.You'll see more of this later.

The first two values, 16 and " 32", are valid. 16 is already an integer value and " 32" can be coerced into one
and still make sense. When the last string value (" Al ex") is reached, however, Lua will attempt to convert it to a
number and find that it has no numeric equivalent, thus stopping execution to report the error of attempting to use
a string in an arithmetic expression:

error: attenpt to performarithmetic on a string val ue

Tables

Tables in Lua are, first and foremost, associative arrays not unlike the ones found in other scripting languages like
Perl and PHP. Associative arrays are also comparable to the hash table structure provided in the standard
libraries for languages like Java and C++.

Tables are indexed with the same syntax as a C array, and are initialized in much the same way. For example,
consider the following table declarations that mimic C string and integer arrays:

IntArray = { 16, 32, 64, 128 };

StringArray = { "Aho", "Sethi", "UIlmn" };

Although you didn't have to specify a data type for the table, or even its size, you do use the traditional C-style
{ ...} notation for initialization. Once the tables have their values, they can be accessed much like you'd expect,
but with one major difference: the initialized values start at index 1, not zero:

print (IntArray [1]);
print (StringArray [2]);

This code will produce the following output:

16
Set hi

Of course, even though an initialization set is automatically indexed from 1, it doesn't mean index zero can't be
used:

IntArray [O] = 8;

print (IntArray [O], IntArray [1], IntArray [2]);

will produce the following output:
8 16 32

Although it's important to note that index zero is perfectly valid as long as you manually give it a value, the real
lesson in the preceding example is your ability to add new elements to a table whenever you need to. Notice that
the set of values that initialized the table included only indexes 1 through 4, but you can still expand the array to
cover 0 through 4 by simply assigning a value to the desired index. Lua will automatically expand the array to
accommodate the new values. In fact, virtually any index you can imagine will already be accessible the moment
you create a new table. For example:

print (IntArray [0]);

print (IntArray [2]);

print (IntArray [24]);

print (IntArray [512]);

Even though indexes 24 and 512 are far from the initialization set, check out the output:

8

32

ni |

ni |

Neat, huh? Lua automatically created and initialized indexes 24 and 512, allowing you to access them without any
sort of out-of-bounds or access-violation errors. In this regard, table indexes are much like typical Lua variables in

that they are created only when they are first assigned (or when you initialize them with the { ...} notation), but
will contain ni | until then.

http://www.books24x7.com/book/id 6929/viewer r.asp?bookid=6929& chunkid=786742672 9/13/2005

http://www.books24x7.com/book/id_6929/viewer_r.asp?bookid=6929&chunkid=786742672

Game Scripting Mastery - Books24x7.com - Referenceware for Professionals Page 7 of 38

The next important aspect of Lua tables is that they are heterogeneous, which means that not all indexes must
contain the same type of value. For example:

MyTable [O] = 256; -- Assign an integer to index O
MyTable [1] = 3.14159; -- Assign a float to index 1
MyTable [2] = "Yahtzee!"; -- Assign a string to index 2

The three indexes of this table contain three different data types, further illustrating a table's flexibility. In addition
to being able to hold any sort of primitive value, table indexes can also hold references to other tables, which
opens the door to endless possibilities. Most obviously, this lets you simulate multi-dimensional arrays, like so:

Miul ti Table = {}
Multi Table [O =
Multi Table [1 =
MultiTable [2] =
print (MultiTable
print (MultiTable
print (MultiTable

{ "ABC', "DEF", "GH " };
{ "JKL", "MNO', "PQR' };
{ "STU", "WK', "YZ" };
[
[
[

0 [
111
2 11

]
]

WN P~
~— — —

Which will output the following:

ABC
MNO
YZ

It's important to know exactly how things are working under the hood when working with tables that contain tables,
however. When working with Lua, don't think of tables as values, but rather as references. Any time you access a
table index or assign a table to another table index, you're actually dealing with the references Lua maintains for
these tables, not the values themselves. For example, the output of the following code snippet could represent
some serious logic errors if you aren't aware of what's happening:

X ={}; -- Declare a table

X[0] = 16; -- Gve it three indexes

X[1] =32

X[2] = 64

print ("X ", X[117); -- Print out index 1

Y = {}; -- Declare a new table

Y[0] =X -- Gve it one index, containing X

Y[O][1] ="String"; -- Set the index 1 of index O to a string
print ("Y: ", Y] O][1171); -- Print out index 1 of index O of Y
print ("X ", X[1171); -- Print out index 1 of X

As you can see, the assigning of Xto Y [0] didn't copy the X table and all of its values. Rather, Y [0] was
simply given a reference to X, which means that any subsequent changes made to the table locatedatY [0]
will also affect X, as can be seen in the output. This is a lot like pointers in C, but I'll keep the pointer analogies to
a minium because this topic can be confusing enough as it is. Refer to Figure 6.8 for an illustration

XL 0] Y

//

16"32 64

0 1 2

Figure 6.8: Both X and Y are refer ring to the same physi cal data; as a result, any changes to either
reference will appear to affect the other.

Moving on, the next major aspect of Lua tables to discuss is their associative nature. In other words, instead of
being forced to use integer indexes to index your array, you can use values of any type. In this regard, tables

http://www.books24x7.com/book/id 6929/viewer r.asp?bookid=6929& chunkid=786742672 9/13/2005

http://www.books24x7.com/book/id_6929/viewer_r.asp?bookid=6929&chunkid=786742672

Game Scripting Mastery - Books24x7.com - Referenceware for Professionals Page 8 of 38

work on the principal of key : value pairs, which let you associate values with other values, called keys, for more
intuitive indexing. Consider the following example:

Note Even though lindexed Mut | i Tabl e [] from O to 2, each of the other three-index tables that were
directly initialized at Mul ti Table [O], Multi Table [1], and so on, are indexed automatically
1 to 3 because of Lua's one-index convention. | automatically use zero-indexing out of habit, but it's
definitely important to keep Lua's style in mind. Forgetting this detail can lead to some nasty logic errors.

Eneny = {};

Enemy ["Name"] = "Security Droid";

Enermy ["HP"] = 200;

Enermy ["Weapon"] = "Pul se Cannon";

Enemy ["Sprite"] = "../gfx/enem es/security_droid. bmp";
print ("Eneny Profile:");

print ("\n Type:", Eneny ["Name"],

"\ n HP.", Eneny ["HP"],
"\ n\Weapon:", Eneny ["Weapon"]);
Enemy Profile:

Type: Security Droid
HP: 200
Weapon: Pul se Cannon

Which will print out the following:
Enemy Profile:

Type: Security Droid
HP: 200
Weapon: Pul se Cannon

As you can see, each of table's elements was indexed with strings as opposed to humbers. To use the previous
terminology, " Name" , " HP" , " Weapon" , and " Spri t e" were the table's keys. The keys were associated with
values, which appeared on the right side of the assignment operator. For instance, " Nane" was the key to the
value " Security Droid". This example also introduced you to the \ n escape code for newlines, which
functions just as it does in C. You'll see the rest of Lua's escape codes later.

Any literal data type can be used as a key, so integers, floating-point values, and of course strings, are all valid.
Lua also provides an extra notational convenience for instances where the string key is also a valid identifier. For
example, consider the following rewrite of the previous example:
Eneny = {};
Eneny. Nane = "Security Droid";
Eneny. HP = 200;
Eneny. Weapon = "Pul se Cannon";
Enemy. Sprite = "../gf x/ enem es/security_droid. bnp";
print ("Eneny Profile:");
print ("\'n Type:", Eneny.Nane,
"\'n HP: ", Eneny. HP,
"\ nWeapon:", Eneny.Wapon);

As you can see, the string keys are now being used as if they were fields of a st r uct -like structure. In this case,
that's exactly what they are. Lua automatically adds these identifiers to the table, allowing them to be accessed in
this way. This technique is completely interchangeable with string keys, so the following code:

Table = {};

Tabl e. X = 16;

Table ["Y'] = 32
print (Table ["X"], Table.Y);

will output:
16 32

as if everything was declared using the same method. Internally, Lua doesn't care, so Tabl e ["Key"] is
always equivalent to Tabl e. Key, provided that " Key" is a string containing a valid identifier.

http://www.books24x7.com/book/id 6929/viewer r.asp?bookid=6929& chunkid=786742672 9/13/2005

http://www.books24x7.com/book/id_6929/viewer_r.asp?bookid=6929&chunkid=786742672

Game Scripting Mastery - Books24x7.com - Referenceware for Professionals Page 9 of 38

Advanced String Features

You've seen how basic string syntax works in Lua, but there are a few slightly more advanced topics worth
covering before moving on. The first is escape sequences, which are special character codes preceded by a
backslash (\) and direct the compiler to replace certain parts of the string before compilation instead of taking
them literally. As an example of when escape sequences are necessary, imagine wanting to use a double quote
in a string, such as in the following example:

Quote = ""Welcone to the real world", she said to nme, condescendingly.";

The problem is that the compiler will think the string ends immediately after the second double quote (which is
really just supposed to denote the beginning of the quotation), which is in reality the first character in the string.
Everything following this will be considered erroneous. Escape sequences help you alleviate this problem by
giving the compiler a heads-up that certain quotes are not meant to begin or end the string, but are just characters
within a larger string. The escape sequence \ " (backslash-double quote) is used to do just this. With escape
sequences, you can rewrite the previous line and compile it without problems:

Quote = "\"Welconme to the real world\", she said to me, condescendingly.";

There are a number of escape sequences supported by Lua in addition to the previous one, but most are related
to text formatting and are therefore not particularly useful when scripting games. However, | personally find the
following useful: \\ (Backslash), \"' (Single Quote), and \ XXX, where XXX is a three-digit decimal value that
corresponds to the ASCII code of the character that should replace the escape sequence.

Using the \ " escape sequence can be a pain, however, when dealing with strings that contain a lot of double
guotes. Because this is a possibility when scripting games (because many scripts will contain heavy amounts of
dialog that possibly require double quotes), you may want to avoid the problem altogether by using single-quotes
to enclose your strings, which Lua also supports. For example, consider the following:

PrintQuote ('You run into the room "No!" you scream as you notice your gun is

m ssing.');

The previous string is equivalent to the following line, but easier to write (and more readable):

PrintQuote ("You run into the room \"No!\" you scream as you notice your gun is
m ssing.");

Of course, if for some reason you need to use a large number of single quotes, you can just stick to the double-
quoted string.

Lastly, Lua supports a third method of enclosing strings that is by far the most powerful. Enclosing your string with
double brackets, such as the following line, allows you to insert physical line breaks directly into the string value
without causing a compile-time error:

MyString = [[This is a

mul ti-1line

string.]];

print (MyString);

This will produce the following output:

This is a
mul ti-line
string.

Expressions

Expressions in Lua are a bit more like Pascal than they are like C, in that they offer a more limited set of operators
and use text mnemonics for certain operators instead of symbols. Lua's many operators are organized in Tables
6.1 through 6.3.

Table 6.1: Lua Arithmetic Operators

|Operator ” Function

+ [Add
| - ” Subtract
I

http://www.books24x7.com/book/id 6929/viewer r.asp?bookid=6929& chunkid=786742672 9/13/2005

http://www.books24x7.com/book/id_6929/viewer_r.asp?bookid=6929&chunkid=786742672

Game Scripting Mastery - Books24x7.com - Referenceware for Professionals Page 10 of 38

* ” Multiply
/ | Divide
N ” Exponent

|

|

| - ” Unary negation
B

” Concatenate (strings)

Table 6.2: Lua Relational Operators

|Operator ” Function

| == ” Equal

| ~= ” Not equal

| < ” Less than

| > ” Greater than

| <= ” Less than or equal

| >= ” Greater than or equal

Table 6.3: Lua Logical Operators

Operator Function
|and ”And

|or ” Or

|not ” Not

Major differences from C worth noting are as follows: the ! = (Not Equal) operator is replaced with the equivalent
~= operator, and the logical operators are now mnemonics instead of symbols (and instead of &&). These are
important to remember, as it's easy to forget details like this and have a "C lapse". :)

Conditional Logic

Now that you have a handle on statements, expressions, and values, you can start structuring that code with
conditional logic. Like C and indeed most high-level languages, Lua uses the tried-and- true i f statement,
although its syntax is most similar to BASIC:
i f <Expression> then

Bl ock;
el sei f <Expression> then

Bl ock;
end

Unlike C, the expression does not have to be enclosed in parentheses, but you can certainly add them if you
want. Expressions can contain parentheses even when they aren't necessary. Here's an example of using i f :

16;

32;

if X>Y then

print ("X is greater.");

X =
Y =

el se
print ("Y is greater.");
end

Lua does not support an analog to C's swi t ch construct, so you can instead use a series of el sei f clauses to
simulate this (and indeed, this is done in C at times as well). For example, imagine you have a variable called

| t emthat keeps track of an item the player is carrying and implements its behavior when used. Normally one
might use a swi t ch to handle each possible value, but you have to use an i f -el sei f -el se chain instead.

http://www.books24x7.com/book/id 6929/viewer r.asp?bookid=6929& chunkid=786742672 9/13/2005

http://www.books24x7.com/book/id_6929/viewer_r.asp?bookid=6929&chunkid=786742672

Game Scripting Mastery - Books24x7.com - Referenceware for Professionals Page 11 of 38

if Iltem == "Sword" then
-- Handl e sword behavi or
elseif Item== "Mrning Star" then
-- Handl e norni ng star behavi or
el seif Item == "Nunchaku" then
-- Handl e nunchaku behavi or
el se
-- Unknown item
end

As you can see, the final el se clause mimics C's def aul t case for swi t ch blocks. As a gentle reminder,
remember that the logical operators in Lua follow a different syntax from C:
X 1;
Y = nil;
if X ~=1Y then
print ("X does not equal Y.");

end
if X and Y then
print ("Both X and Y are true.");
end
if Xor Y then
print ("Either X or Yis true.");
end
if not (Xor Y) then
print ("Neither X nor Y is true.");
end

lteration

The last control structures to consider when discussing Lua are its iterative structures (in other words, its loops).
Lua supports a number of familiar loop types: whi | e, f or, and r epeat . whi | e and f or should make C
programmers feel at home, and Pascal users will appreciate the inclusion of r epeat . All of the structures have a
fairly predictable syntax, so take a look at all of them:
whi | e <Expressi on> do

-- Block
end

for <lIndex> = <Start>, <Stop> <Step> do
-- Block
end

r epeat
-- Block
until <expression>

That should all look pretty reasonable, although the exact syntax of the f or loop might be a bit confusing. Unlike
C, which allows you to use entire statements (or even multiple statements) to define the loop's starting condition,
stopping condition, and iterator, Lua allows only simple numeric values (in this regard, it's a lot like BASIC). The
step value is also optional, and omitting it will cause the loop to default to a step of 1. Take a look at some
examples:
for X =0, 3 do

print ("lteration:", X);
end

This code will produce:

Iteration: 0
Iteration: 1
Iteration: 2
Iteration: 3

As you can see, the step value was left out and the loop counting from 0 to 3 in steps of 1. Here's an example
with the step included:

http://www.books24x7.com/book/id 6929/viewer r.asp?bookid=6929& chunkid=786742672 9/13/2005

http://www.books24x7.com/book/id_6929/viewer_r.asp?bookid=6929&chunkid=786742672

Game Scripting Mastery - Books24x7.com - Referenceware for Professionals Page 12 of 38

for X =0, 7, 2 do
print ("lteration:", X);
end

It produces:
Iteration:
Iteration:
Iteration:
Iteration:

OO R~DNO

Before moving on, | should mention an alternative form of the f or loop that you might find useful. This version is
specifically designed for traversing tables, and looks like this:
for <Key>, <Value> in <Table> do
-- Block
end

This form of the loop traverses through each key : value pair of Tabl e, and sets Key and Val ue appropriately at
each iteration. Key and Val ue can then be accessed within the loop. For example:

My Table = {};

MyTable ["Key0"] = "Val ue0";
MyTable ["Keyl"] = "Val uel";
MyTable ["Key2"] = "Val ue2";

for MyKey, MyValue in MyTabl e do

print (MyKey, MValue);
end

produces the following output:
KeyO Val ue0
Key?2 Val ue2
Key1l Val uel

Note Notice that in the first example for the table- traversing form of the f or loop, the values seem to have
been printed out of order.The key : value pair " Key2" "Val ue2" came before " Key1" ,"Val uel" .This
is because associative arrays don't have the same numeric order that integer-indexed tables do, so the
order at which elements are added is not necessarily the element in which they are stored.

Functions

Functions in Lua follow a pattern similar to that of most languages, in that they're defined with an initial declaration
line, containing an identifier and a parameter list, followed by a code block that implements the function. Here's an
example of a simple function that adds two numbers and returns the sum:
function Add (X, Y)

return X +Y,
end
print (Add (16, 32));

The output, of course, is 48. The only real nuance regarding functions is that unlike most languages, all variables
referenced or created in a function are in the global scope by default. So, for example, imagine changing the
previous code so that it looks like this:
function Add (X, Y)
return X +Y,
end
Add (16, 32);
print (dobal Var);

Now, instead of printing the return value of the Add () function, you print the uninitialized G obal Var . Not
surprisingly, the output is simply nil. However, when you add another line:
function Add (X, Y)
d obal vVar = X + Y,
end
Add (16, 32);
print (dobal Var);

http://www.books24x7.com/book/id 6929/viewer r.asp?bookid=6929& chunkid=786742672 9/13/2005

http://www.books24x7.com/book/id_6929/viewer_r.asp?bookid=6929&chunkid=786742672

Game Scripting Mastery - Books24x7.com - Referenceware for Professionals Page 13 of 38

You once again get the proper output of 48. This is because G obal Var is automatically created in the global
scope, and therefore is visible even after Add () returns. To suppress this and create local variables, the | ocal
keyword is used. So, if you simply add one instance of | ocal to the previous example:

function Add (X, Y)
| ocal @ obalVar = X +Y;
end
Add (16, 32);
print (d obal Var);

The output of the script is once again ni | , as it would be in most other languages. This is because G obal Var is
created only within the Add () function's scope (so you should probably consider renaming it "Local Var "), and
is therefore invisible once it returns.

The last thing to mention about functions is that they too can be assigned to variables and even table elements.
Imagine two variables called Add () and Sub (), which each perform their respective arithmetic operation:
function Add (X, Y)

return X + Y,
end

function Sub (X, Y)
return X - Y;
end

You could assign either of these functions to a variable called Mat hQOp, like this:
Mat hOp = Add;

And could then call the Add () function indirectly by "calling" Mat hQp instead:
print (MathOp (16, 32));

The output will be 48. The interesting thing, however, is what happens when all you change is the function that
you assign to Mat hOp:

Mat hOp = Sub;

print (MathOp (16, 32));

Because Mat hOp now refers to the Sub () function, your output will be - 16. As mentioned previously, this
capability to "assign” functions to variables is like a somewhat simplified version of C's function pointers. Use it
wisely, my friend.

One last detail; because functions can be assigned to table elements, you can take advantage of the same
notational shorthands. For example:
function PrintHello ()
print ("Hello, World!");
end

MyTabl e = {};
MyTable ["Greeting"] = PrintHell o;

At this point, the " Greeti ng" element of MyTabl e contains a reference to Pri nt Hel | o (), which can now be
called in two ways:

M/Table ["Greeting" | ();
MyTabl e. Greeting ();

Both are valid and considered equivalent as far as Lua is concerned, but | personally prefer the latter version
because it looks more natural.

Note Again, if you're anything like me, a gear or two may have started to turn when you saw the last
example."Functions? Stored in tables and accessible just like methods in a class? Hmmmm..." Yes, my
friends, this is a small part of the puzzle of how Lua can emulate object-orientation. | won't be covering
that in this book, but it's certainly an interesting topic to investigate. See if you can figure out the rest!

Integrating Lua with C

http://www.books24x7.com/book/id 6929/viewer r.asp?bookid=6929& chunkid=786742672 9/13/2005

http://www.books24x7.com/book/id_6929/viewer_r.asp?bookid=6929&chunkid=786742672

Game Scripting Mastery - Books24x7.com - Referenceware for Professionals Page 14 of 38

Now that you understand the Lua language enough to get around, it's time for the real fun to begin. In a moment,
you'll return to the bouncing alien head demo and recode the majority of its core logic with Lua as an example of
true script integration. But before you go that far, you need to first get your feet wet by getting Lua to run inside
and interact with a simple console application to make sure you understand the basics.

The first goal is decidedly simple; write one or two basic scripts, load them in a simple console application, and
print some basic output to the screen that illustrates the interactions between the C program and Lua.

Specifically, this program illustrates the following techniques:
m | oading Lua script files and executing them.
m Exporting a C function so that it can be called from Lua scripts.
= Importing Lua functions from scripts so that they can be called from C.

m Passing parameters and returning values in a number of data types to and from both C and Lua.

Reading and writing global variables in Lua scripts.

Compiling a Lua Project

Understanding how to compile a Lua project is the first and most important thing to understand for obvious
reasons. Not surprisingly, the first step is to include ® lua. hin your main source file and make sure the
compiler knows where to find the @ | ua. | i b library.

In the case of Microsoft Visual C++ users, this is a simple matter of selecting Options under the Tools menu and
activating the Directories tab. Once there, set the Show Directories For pop-up menu to Include Files. Click the
new directory button (the document icon with the sparkle in the upper-left corner) and enter the path to your Lua

installation folder (which should contain ® | ua. h). Next, set the Show Directories For pop-up to Library Files

and repeat what you did for the include files (as long as that same directory also includes ® Jua.li b). Figure
6.9 shows the Options dialog box.

Options
Edior | Tabs | Debug | Compatiiiy | Buid Drectories | | (3]3]

Flatonm Showe dilectonies for
I"-\-":n_?".. _":J | Inchade filez ___":J
Diractofes fE*T+

CADEDEETMMCLUDE

Co\Program Fler\Wicrosof! Visual Studis\WCINNCLUDE
C:\Program Fies\Miceoeoft Visual Studic\WCSNMFCJUMCLUDE
C:\Program Fies\Microsoft Visual Studic\WCS\ATLINCLUDE

Ov:4CodetLua

[ok | coce |

Figure 6.9: The Visual C++ Options dialog box.

Once these settings are complete, make sure to physically include @ | ua. I'i b in your project. I like to put mine
under a Libraries folder within the project.

Including the header file is simple enough, but there is one snag. Lua is a pure-C library. That may not mean
much these days, when popular compilers pretty much blur the difference between C and C++ programs, but
unless you're using a pure C programming environment, your linker will have some issues with it if you don't

explicitly mention this fact. So, make sure to include @ | ua. h like this:
extern "C'

{

#i ncl ude <l ua. h>

http://www.books24x7.com/book/id 6929/viewer r.asp?bookid=6929& chunkid=786742672 9/13/2005

http://www.books24x7.com/book/id_6929/viewer_r.asp?bookid=6929&chunkid=786742672

Game Scripting Mastery - Books24x7.com - Referenceware for Professionals Page 15 of 38

}
Remember, this will work only if you properly set your path as described previously.

Note In case you're not familiar with it, ext er n is a directive that informs the linker that the identifiers
(namely functions) defined within its braces follow the conventions of another language and should be
treated as such. In this case, because most people are using the C++ linker that ships with Microsoft
Visual C++, you need to make sure it's prepared for a C library that uses slightly different conventions
when declaring functions and the like.

Initializing Lua

Lua works on the concept of states. A Lua state is essentially a structure that contains information regarding a
specific instance of the runtime environment. Each state can contain one script at any time, which is loaded into
memory for use. To load and execute multiple scripts concurrently, one needs only to initialize multiple states.

Think about states in the same way you'd think about two instances of the same program in memory. Imagine
starting Photoshop (if you don't own Photoshop, imagine owning it as well). Now imagine loading Photoshop
again, thus creating two instances of the program at once. Each instance exists in its own "space," and is
unrelated to and unaffected by the other. You can open a photo of your dog in one instance, and while doing post-
production work on a 3D rendering in the other. Both instances of Photoshop, although essentially the same
program with the same functionality, are doing different things at the same time without any knowledge of each
other.

From the perspective of the host application, a Lua state is simply a pointer to | ua_St at e structure. Once you've
declared such a pointer, you can call | ua_open () to intialize the state. The only parameter required by
 ua_open () is the stack size that this particular state will require. Don't worry too much about this; stack size
will really only affect the state's ability to handle excessive nesting of function calls, so unless you're going to be
hip deep in recursive algorithms, just set it to something like 1024 and forget about it (even this is overkill, but
memory is cheap these days so go nuts!). In the relatively unlikely event that you run into stack-overflow errors,
just increase it. Here's an example:

lua_State * pLuaState = lua_open (1024);
Note You can also pass zero to | ua_open (), which will cause the stack size to default to 1024 elements.

This example creates a new state called pLuaSt at e that refers to an instance of the runtime environment with a
stack of 1024 elements. This state is now valid, and is capable of loading and executing scripts.

Of course, no initialization function is complete without its corresponding shut down function. Once you're done
with your Lua state, be sure to close it with | ua_cl ose:

lua_close (lua_State * pLuaState);

Loading Scripts

Loading scripts is just as easy as initializing the Lua state. All that's necessary is calling | ua_dofile () and
passing it the appropriate filename of the script, as well as the state pointer you just initialized. | ua_dofile ()
has the following signature:

int lua_dofile (lua_state * pLuaState, const char * pstrFilename);

To execute a script stored in the file "my_scri pt. | ua", you enter the following:
i ErrorCode = lua_dofile (pLuaState, "my_script.lua");

The pLuaSt at e instance of the runtime environment will now load, verify, and immediately execute the file. Keep
in mind that | ua_dofil e () will load both compiled and uncompiled scripts transparently; you can pass it either
type of file and it will automatically detect and handle it properly. However, because uncompiled scripts will need
to be compiled before they can be executed, they will take slightly longer to load. Also, uncompiled scripts are not
necessarily valid and may contain syntactic or semantic errors that a compiler would normally not allow. In this
case, the callto | ua_dofil e () will not succeed, so let's discuss its potential error codes. Refer to Table 6.4 for
a complete listing.

Once the script is loaded, it is immediately executed. This isn't always what you want; many times, you'll want to
load a script ahead of time and execute it later, or even better, execute different parts of it at different times. Il
cover this in a moment. For now, let's just focus on simply loading and running scripts.

http://www.books24x7.com/book/id 6929/viewer r.asp?bookid=6929& chunkid=786742672 9/13/2005

http://www.books24x7.com/book/id_6929/viewer_r.asp?bookid=6929&chunkid=786742672

Game Scripting Mastery - Books24x7.com - Referenceware for Professionals Page 16 of 38

Note As you can see, the only shred of compile-time error information | ua_dofil e () will give you is
LUA_ERRSYNTAX, which is pretty much one step above nothing at all. Let this be another example of
how useful the | uac compiler is, which gives you a rundown of compile-time errors in detail beforehand.
Don't be lazy! Use it!

You can load scripts, but how will you actually know if they're doing anything? You don't have any way to print text
from the Lua script to your console application, so even if the script works, you have no way to observe it. This
means that even before you write and execute a Lua script,

Table 6.4: | ua_dofile () Error Codes

| Code ” Description

| 0 ” Success.

| LUA_ERRRUN ” An error occurred while running the script.

| LUA ERRSYNTAX ” A syntax error was encountered while pre-compiling the script.

| LUA_ERRMEM ” The required memory could not be allocated.

LUA ERRERR An error occurred with the error alert mechanism. Kind of embarrassing, huh?.
)

| LUA ERRFI LE ” An error occurred while attempting to open or read from the file.

you have to learn how to call C functions from Lua. Once you can do this, you just wrap a function that wraps
printf () orsomething along those lines, and you can print the output of your scripts to the console and
actually watch it run.

As such, pretty much everything following this point deals with how Lua and C are integrated, starting with the all-
important Lua stack.

The Lua Stack

Lua communicates with C primarily through a stack structure that can be used to pass everything from the values
of global variables to function references to parameters to return values. Lua uses this stack internally for a
number of tasks, but all you care about is how you can use it to talk to Lua scripts and interpret their responses.

Let's first take a look at some of the generic stack-manipulation functions and macros that Lua provides. It might
not make total sense just yet as to how these are used or why, but rest assured it will all make sense soon. You
should come to understand the basics of these functions before learning how to apply them.

Much like tables, Lua stacks are indexed starting from 1. This is important to know because the stack does not
have to be accessed in a typical stack fashion at all times. The traditional "pushand-pop" stack interface is always
available, but you can refer to specific elements of the stack much like you do an array when necessary.

At any time, the index of the stack's top element will be equal to stack's overall size. This is because Lua indexes
the stack starting from 1; therefore, a stack of one element can be indexed from 1-1, a stack of 16 elements can
be indexed from 1-16, and so on. This is a stark contrast from C and most other languages, in which arrays and
other aggregate structures begin indexing from 0. In these cases, the "top" or "last" element in the structure is
always equal to the size minus one. Figure 6.10 shows you the Lua stack visually.

http://www.books24x7.com/book/id 6929/viewer r.asp?bookid=6929& chunkid=786742672 9/13/2005

http://www.books24x7.com/book/id_6929/viewer_r.asp?bookid=6929&chunkid=786742672

Game Scripting Mastery - Books24x7.com - Referenceware for Professionals Page 17 of 38

Bottom element
always resides at ——= 1
index T

Figure 6.10: The Lua stack.

A program's stack is a turbulent data structure; as functions are called and expressions are evaluated, it grows
and shrinks in an erratic pattern. Because of this, stacks are usually accessed in relative terms. For example,
when a given function is active, it usually works with its own local portion of the stack, the offset of which is
usually passed by the runtime environment.

In the case of Lua, you'll generally be accessing the stack to do one of two things: to write a C function that your
scripts can call, or to access your script's global variables. In both cases, the Lua stack will be presented to your
program such that the indexes begin at 1. In essence, Lua "protects" the rest of the stack that your program isn't
accessing, much like memory-protected operating systems like Windows and Linux protect the memory of your
computer from a program if it lies outside of its address space. This makes your job a lot easier, because you can
always pretend your chunk of the stack begins at 1. Take a look at Figure 6.11, which illustrates this.

http://www.books24x7.com/book/id 6929/viewer r.asp?bookid=6929& chunkid=786742672 9/13/2005

http://www.books24x7.com/book/id_6929/viewer_r.asp?bookid=6929&chunkid=786742672

Game Scripting Mastery - Books24x7.com - Referenceware for Professionals Page 18 of 38

9 i

8 1 Abstracted
Stack

7 2 Segment

B 1

Figure 6.11: Regardless of the size of the stack, Lua will always present what appears to be an empty stack
starting from 1 when it is accessed from C.

So to sum things up, Lua will virtually always appear to portray an empty stack starting from 1 when you attempt
to access it from C. That being said, let's look at the functions that actually provide the stack interface. Lua
features a rich collection of stack-related functions, but the majority of them won't be particularly useful for your
purpose and as such, I'll be focusing only on the major ones.

First off, there's | ua_gettop (), which gives you the index of the top of the stack:
int lua_gettop (lua_State * pLuaState);

As you learned when you took a look at | ua_open (), each Lua state has its own stack size, and thus, its own
stack. This means all stack functions (as well as the rest of Lua's functions for that matter) require a pointer to a
specific state. Getting back to the topic at hand, this function will return the index of the top element i nt . As you
learned, this is also equal to the size of the stack.

Up nextis | ua_st ackspace (), which returns the number of stack elements still available in the stack. So, if
the stack size is 1024, and 24 bytes have been used at the time this function is called, 1000 will be returned. This
function is especially important because the host application, not Lua, is responsible for preventing stack
overflow. In other words, if your program is rampantly pushing value after value onto the stack, you run the risk of
an overflow error because Lua won't stop or even alert you until it's too late. | ua_st ackspace () should be
used in any case where large numbers of values will be pushed onto the stack, especially when the pushing will
be done inside loops, which are especially prone to overflow errors.

The next set of functions you will read about is one of the most important. It provides the classic push/pop
interface that stacks are usually associated with. Despite the fact that Lua is typeless, C and C++ certainly aren't,
and as such you'll need a number of functions for pushing different data types:

void | ua_pushnunmber (lua_State * pLuaState, double dVal ue);

void lua_pushstring (lua_State * pLuaState, char * pstrValue);

void lua_pushnil (lua_State * pLuaState);

These are three of Lua's | ua_push* () functions, but they're the only ones you really have a need for (the rest
deal with more obscure, Lua-oriented data types). lua_pushnunber () accepts a double-precision float value,
which is a superset of all numeric data types Lua supports (integers, single- and double-precision floating-point).
This means that both i nt s and f | oat s need to be passed with this function as well. Nextis | ua_pushstri ng
(), which predictably accepts a single char * that points to a typical null-terminated string. The last function
worth mentioning is | ua_pushni | (), which doesn't require any value, as it simply pushes Lua's ni | value

http://www.books24x7.com/book/id 6929/viewer r.asp?bookid=6929& chunkid=786742672 9/13/2005

http://www.books24x7.com/book/id_6929/viewer_r.asp?bookid=6929&chunkid=786742672

Game Scripting Mastery - Books24x7.com - Referenceware for Professionals Page 19 of 38

onto the stack (which, if you remember, is conceptually similar to C's NULL, except that it's not equal to zero).

Popping values off the stack is a somewhat different story. Rather than provide a collection of | ua_pop* ()
functions to match the push functions, Lua simply provides a single macro called | ua_pop (), which looks like
this:

lua_pop (lua_State * pLuaState, int iElenentCount);

This macro does nothing more than pops i El ement Count elements off the stack. They don't actually go
anywhere when you pop them, so this function can only be used to remove the values, not extract them. To
actually receive the values and store them in C variables, you must use one of the following functions before
calling I ua_pop ():

doubl e lua_tonunber (lua_State * pLuaState, int ilndex);

const char * lua_tostring (lua_State * pLuaState, int ilndex);

Again, the functions should be pretty easy to understand just by looking at them. Give either function an index into
the stack, and it will return its value (but will not pop or remove that value). In the case of numeric values, you'll
always receive a doubl e (whether you want an integer or not), and in the case of strings, you'll of course be
returned a char pointer. Because neither of these functions actually removes the value after returning them, I'll
just reiterate that you need to use | ua_pop () afterwards if you actually want the value taken off the stack
afterwards. Otherwise, these functions can be used to read from anywhere in Lua's stack. To reliably read from
the top of the stack every time with these functions, remember to use | ua_gett op () to provide the index.

Actually, because Lua doesn't provide a particularly convenient way to directly pop a value off the stack in the
traditional context of the stack interface, let's write some macros to do it now. Using the existing Lua functions,
you have to do three things in order to simulate a stack pop:

= Get the index of the stack's top element using | ua_gettop ().

m Use one of the | ua_t o* () functions to convert the element at the index returned in the first steptoa C
variable.

= Usel ua_pop () to pop a single element off the top of the stack.

Because this would be a fairly bulky chunk of code to slap into your program every time you want to do this, a
nice little macro that wraps this all up into a single call would be great. Here's one that will pop integers off the
stack in one fell swoop:
#def i ne PopLual nt (pLuaState, iDest) \
{ \

i Dest = (int) lua_tonunmber (pLuaState, |ua_gettop

(pLuaState)); \
| ua_pop (pLuaState, 1); \

Just pass the macro a valid Lua state and an integer and it will be filled with the proper value. Here's a small code
example (assume that pLuaSt at e has already been created with | ua_open ()):

int X Y;
X = 0;
Y = 32;

| ua_pushnunber (pLuaState, Y);
printf ("X %, Y: %d\n", X Y);
PopLual nt (pLuaState, X);

printf ("X %, Y: %d\n", X Y);

The output will be:
X0, Y 32
X 32, Y: 32

Try writing similar versions of the macro for floating-point numerics and strings. Be the first kid on your block to
collect all three!

So at this point, you can do some basic querying of stack information, and you can push and pop stack values of
any data type, as well as perform random access to arbitrary stack indexes (thereby treating it like an array).
That's pretty much everything you'll need, but there are a few remaining stack issues to discuss.

http://www.books24x7.com/book/id 6929/viewer r.asp?bookid=6929& chunkid=786742672 9/13/2005

http://www.books24x7.com/book/id_6929/viewer_r.asp?bookid=6929&chunkid=786742672

Game Scripting Mastery - Books24x7.com - Referenceware for Professionals Page 20 of 38

First of all, because you now have the ability to read from anywhere in the stack, you should read a bit more
about what a valid stack index is. Remember that the Lua stack always starts from 1.

Because of this, 0 is never a valid index (unlike tables) and should not be used. Past that, valid indexes run from
1 to the size of the stack. So, if you have a stack of four elements, 1, 2, 3, and 4 are all valid indexes.

One interesting facet of Lua stack access, however, is using a negative number. At first this may seem strange,
but using a negative has the effect of accessing the stack "in reverse," so to speak. Index 1 always points to the
bottom of the stack, whereas -1 always points to the top. Going back to the example of a four-element stack,
consider the following. If index 1 points to the bottom, so does index -4. If index 4 points to the top, so does -1.
The same goes for the other elements: element 2 can be indexed with either 2 or -3, whereas element 3 can be
accessed with either 3 or -2. Basically, you can always access the stack either relative to the top or relative to the
bottom, depending on which is most convenient. Figure 6.12 helps illustrate this concept.

9 1

] 2

7 3

] -4

5 5

] B

3 7

2 B
Bottom element

always resides at ——» 1 -8
index 1

Figure 6.12: Stacks can be accessed relative to either the top or bot tom element, depend ing on the sign of
the index. Positive indexes work from the bottom up, whereas negatives work from the top
down.

Lastly, let's take a look at a few extra functions Lua provides for determining the type of a given stack element
without removing or copying it into a variable first.

void lua_type (lua_State * pLuaState, int ilndex);

void lua_isnil (lua_State * pLuaState, int ilndex);

void lua_isnunber (lua_State * pLuaState, int ilndex);

void lua_isstring (lua_State * pLuaState, int ilndex);

The first function, | ua_t ype (), returns one of a number of constants referring to the type of the element at the
given index. These constants are shown with a description of their meanings in Table 6.5.

Table 6.5: | ua_t ype () Return Constants

Constant Description
|LUA_TNI L || ni |
|LUA_TNUIVBER || Numeric: i nt, long, float, ordouble.
| LUA_TSTRI NG || String
| LUA_TNONE || Returned when the specified index is invalid. Nice job, slick!

http://www.books24x7.com/book/id 6929/viewer r.asp?bookid=6929& chunkid=786742672 9/13/2005

http://www.books24x7.com/book/id_6929/viewer_r.asp?bookid=6929&chunkid=786742672

Game Scripting Mastery - Books24x7.com - Referenceware for Professionals Page 21 of 38

The other l ua_i s* () functions work in the same way, but simply return 1 (true) or O (false) if the specified
index is compatible with the given type. So for example, calling | ua_i snunber (pLuaState, 8), will return
1 if the element at index 8 is numeric, and 0 otherwise. As you'll learn later in this section, Lua passes parameters
to C functions on the stack; when writing a C function that Lua can call, these functions can be useful when
attempting to determine whether the parameters passed are of the proper types.

Exporting C Functions to Lua

The process of making a function of the host application callable from Lua (or any scripting system, for that
matter) is called exporting. To export a function from C to Lua, you simply need to pass a function pointer to the
Lua runtime environment, as well as a string containing a name the function should be known by inside the
scripts. Lua provides a simple function for this (actu- ally, it's a macro), as follows:

lua_register (lua_State * pLuaState, const char *
pstrFuncNane, |ua_CFunction pFunc);

Given a function name string, the actual function pointer (I'll cover the | ua_CFunct i on structure in a second)
and the specific Lua state to which this function should be exported, | ua_r egi ster (), will register the

function, which allows scripts to refer to it just like any other function. For example, the following script is
considered valid if a C function called CFunc () is exported to the state in which it runs:

function MyFuncO (X, Y)

end
function MyFuncl (Z)

end

MyFuncO (16, 32);

MyFuncl ("String Paranmeter");
CFunc (2, 4.8, "String Paraneter");

Of course, if CFunc () is not exported, this will produce a runtime error. Notice, however, that the syntax for
calling the C function is identical to any other Lua function, including parameter passing. Speaking of parameters,
one detail to remember is that exported C functions do not have well-defined signatures. You can pass any
number of parameters of any primitive data type and Lua won't complain. It's the C function's responsibility to sort
out the incoming parameters.

To get a feel for how this actually works in practice, let's create that text-printing function discussed earlier, so
your subsequent scripts can communicate with you through the console.

The first step, of course, is to write the function. The first attempt at a pri ntf () wrapper might look like this:

void PrintString (char * pstrString)
{

printf (pstrString);

printf ("\n");
}

This simple wrapper does nothing more than pass pstrStringtoprintf () and follow it up with a newline.
This is fine as a general-purpose pri ntf () wrapper, but it's not going to work with Lua. Lua requires any C-
defined functions to follow a specific function signature, so it can easily maintain a list of function pointers. The
prototype of a Lua-compatible C function must look like this:

int FuncNanme (lua_State * pLuaState);

Not only is this signature quite a bit different than the Pri nt Stri ng () wrapper, it looks like it would work only
for a function that doesn't require any parameters (aside from the Lua state) and always returns an integer,
doesn't it? The reason all functions can follow this same format is because parameters from Lua and return
values to Lua are not handled in the same way as they are in C. Both incoming parameters and outgoing results
are pushed onto the Lua stack.

Because all incoming parameters are on the stack, you can use Lua's stack interface functions to read them.
Remember, at the time your function is called, Lua will make it seem as if the stack is currently empty (whether it
is or not), so all of your stack accessing will be relative to element index 1. At the beginning of your C function, the
stack will be entirely empty except for any parameters that the Lua caller may have passed. Because of this, the
size of the stack is always synonymous with the number of parameters the caller passed, and thus, you can use

http://www.books24x7.com/book/id 6929/viewer r.asp?bookid=6929& chunkid=786742672 9/13/2005

http://www.books24x7.com/book/id_6929/viewer_r.asp?bookid=6929&chunkid=786742672

Game Scripting Mastery - Books24x7.com - Referenceware for Professionals Page 22 of 38

lua_gettop ().

Once you know how many parameters have been passed, you can read them using Lua's | ua_t o* ()
functions, although you'll need to know what data type you're looking for ahead of time. So, if you wrote a function
whose parameter list looked like this:

(integer X, float Y, string Z)

You could read these three parameters like this:

int X=(int) lua_tonunmber (pLuaState, 1);
float Y = lua_tonunber (pLuaState, 2);

char * Z = lua_tostring (pLuaState, 3);

Notice that parameter X was at index 1, Y was at index 2, and Z was at index 3. Lua always pushes its
parameters onto the stack in the order they're passed.

Values can be returned in the opposite manner, by pushing them onto the stack before the C function returns.
Like passed parameters, return values are pushed onto the stack in the order in which they should be received.
Remember, Lua supports multiple assignment and thus multiple return values from functions. If this hypothetical
function were to return three more numeric values, the code would look something like this:

| ua_pushnunber (pLuaState, 16);
| ua_pushnunber (pLuaState, 32);
| ua_pushnunber (pLuaState, 64);
return 3;

Notice that the function returns an integer value corresponding to the number of result values the function should
return to Lua (3 in this case). This is very important, as it helps Lua clean up the stack properly afterwards, and
can lead to stack corruption errors if this number is not correct. Let's imagine this C function is exported under the
name CFunc (). If it's called from Lua in order to return three values, the variables in the following code:

U V, W= CFunc (X, Y, Z);
would be filled in the same order you pushed the values. So, Uwould be set to 16, V to 32, and W to 64.

Tip Remember, you can always use the | ua_i s* () functions to validate the data type of the passed
parameters. This is especially important because Lua won't force the caller of a host API function to follow
a specific prototype, and you have no other way of knowing for sure that the passed parameters are valid.

So you're now capable of registering a C function with Lua, as well as receiving parameters and returning results.
That's pretty much everything you need, so let's have a go at implementing that pri ntf () wrapper mentioned
earlier. I'll just show you the code up front and I'll dissect it afterwards:
int PrintStringList (lua_State * pLuaState)
{

/1l Get the number of strings

int iStringCount = lua_gettop (pLuaState);

/1 Loop through each string and print it, followed by a newine

for (int iCurrStringlndex = 1; iCurrStringlndex <=

i StringCount; ++ iCurrStringlndex)
{

/1l First make sure that the current paraneter on the
/1l stack is a string

if (! lua_isstring (pLuaState, 1))
/1 1f not, print an error
lua_error (pLuaState, "Invalid string.");
}
el se
{

/1 Otherwise, print a tab, the string, and finally a newine
printf ("\t");

printf (lua_tostring (pLuaState, i CurrStringlndex));
printf ("\n");

}
}

http://www.books24x7.com/book/id 6929/viewer r.asp?bookid=6929& chunkid=786742672 9/13/2005

http://www.books24x7.com/book/id_6929/viewer_r.asp?bookid=6929&chunkid=786742672

Game Scripting Mastery - Books24x7.com - Referenceware for Professionals Page 23 of 38

/1l Return zero, as this function does not return any results
return O;

}

As you can see the function is now called Pri nt Stri ngLi st () and accepts a variable number of string
parameters, which are then printed, indented by one tab, and followed by a newline. The function starts with a call
to l ua_gettop (), which, as you remember, can be used to get the number of parameters when writing host
API functions. This value is putin i St ri ngCount , and af or loop begins in which each string is read from the
stack and then printed to the screen. | ua_i sstring () is used to validate each string. If the parameter is of a
non-string type, | ua_error () is called. You haven't seen this function before, so I'll take a moment to explain
it. Designed for use in console applications, | ua_error () accepts a Lua state and a string parameter and halts
the current script just before printing the supplied message. Here's the prototype, just for reference:

void lua_error (lua_State * pLuaState, char * pstrMssg);

Getting back on track, the rest of the loop deals with reading the string from the stack using ua_t ostring ()
and printing it to the screen (in between the tab and newline characters). The function is finished when the loop
ends, and it returns O because there were no results to be returned to the Lua caller. Notice also that the
parameters passed on the stack are not popped off by the function; this is handled automatically by the Lua
runtime environment.

Note When writing host API functions, it helps to be aware that Lua will always ensure that there is at least a
minimum number of stack elements avail- able.This number is stored in the @ | ua. h constant
LUA_M NSTACK (which is set to 16, by default).This means that no matter what, your function will
always have at least LUA_M NSTACK stack elements to work with, although it's always good practice to
make sure of this with | ua_st ackspace ().

Executing Lua Scripts

Now that you have your Print Stri ngLi st () written and exported, you're ready to write your first Lua script
and watch it execute from within your C host. This first script will be decidedly simple; all you need to do right now
is print out a few strings to make sure everything is working right. Once you know you have set everything up
correctly, you can accomplish more complex tasks.

This first script will pretty much just do some variable assignment and pass some strings to Pri nt St ri ngLi st
() to display the results. Let's check it out:

-- Create a full name string

First Nane = "Al ex";
Last Nanme = "Var anese";
Ful |l Name = "Nanme: " .. FirstNanme .. " " .. LastNane;

-- Now put the floating point value of pi into a string

Pi = 3.14159;

PiString = "Pi: " .. Pi; -- Numeric values can be automatically coerced to
strings

-- Test sone logic

X = 0; -- Try setting this to nil instead of zero
if X then

Logic = "X is true."; -- Renenber, only nil is considered false in Lua
el se

Logic = "X is false.";

end

-- Now call your exported C function for printing the strings
PrintStringList ("Random Strings:", ""); -- The extra enpty
-- string is just to
-- create a blank Iine
PrintStringList (FullNanme, PiString, Logic);

The first part of the script, called ® test_ 0.1 ua, creates two string variables, Fi r st Nane and Last Nane, and

uses the . . string concatenation operator to combine them into Ful | Nane. The next part uses a floating-point
value to create a string containing the first few digits of pi. Notice that Lua automatically casts, or coerces, the

http://www.books24x7.com/book/id 6929/viewer r.asp?bookid=6929& chunkid=786742672 9/13/2005

http://www.books24x7.com/book/id_6929/viewer_r.asp?bookid=6929&chunkid=786742672

Game Scripting Mastery - Books24x7.com - Referenceware for Professionals Page 24 of 38

floating-point value into a valid string. Next, you create the last string, Logi ¢, by setting it to one of two different
values depending on whether the variable X evaluates to true. This illustrates Lua's definition of truth as any non-
ni | value.

Lastly, with all three strings ready (Ful | Nane, Pi St ri ng, and Logi ¢), you make two calls to
PrintStringList () todisplay them on the console provided by the host C program. Once again, note that
the syntax for calling the exported C function was typical Lua syntax, which allows your C functions to blend
seamlessly into your Lua-defined functions (even though this script didn't have any).

Returning to the C side of things, your host application's mai n () function starts with this:

// Initialize a Lua state and set the stack size to 1024
lua_State * pLuaState = lua_open (1024);

/1 Register your sinple function with the Lua state for
/1 printing text strings
lua_register (pLuaState, "PrintStringList", PrintStringList);

/1 Print the title
printf ("Lua Integration Exanple\n\n");

/1 Execute your first test script, which just prints
/1 random strings

printf ("Executing Script test_O.lua:\n\n");
lua_dofile (pLuaState, "test_0.lua");

All that's necessary to run this script is to initialize Lua with a call to | ua_open (), register the
PrintStringList () functionwith| ua_register (), and finally load and execute the script in one fell
swoop with [ua_dofi | e (). The output of this program will look like this:

Lua I ntegration Exanple
Executing Script test_ 0.l ua:
Random Stri ngs:

Nane: Al ex Var anese
Pi: 3.14159
X is true.

Thanks to Pri nt StringLi st (), you can be sure that everything went smoothly because the results are right
there on the console. Now that you have a simple framework built up for executing Lua, you can try your hand at
a more sophisticated example.

Importing Lua Functions

You're probably not too surprised to learn that the opposite of exporting a function from C is importing one from
Lua. Naturally, importing a function is the process of making that function callable from C, which means that Lua
can not only take advantage of C functions you've already written, but your host application can capitalize on any
useful functions you may have written in your scripts.

The next script will be primarily focused on demonstrating this concept. To begin, you're going to write a new
script, one that defines two functions. The first function will be called Exponent (), and, given two parameters X
and Y, will return X ~ Y. The second function, Mul ti pl yString (), will multiply a string, which basically just
means repeating a string a specified number of times. In other words, " Hel | 0" multiplied by four produces the
following:

Hel | oHel | oHel | oHel | o

Although these two functions are indeed simple, they prove educational; between the two of them, they will
demonstrate:

» How a Lua function is called from C.

m How both numeric and string parameters are passed to a Lua function from a C host.

http://www.books24x7.com/book/id 6929/viewer r.asp?bookid=6929& chunkid=786742672 9/13/2005

http://www.books24x7.com/book/id_6929/viewer_r.asp?bookid=6929&chunkid=786742672

Game Scripting Mastery - Books24x7.com - Referenceware for Professionals Page 25 of 38

m How both numeric and string results can be returned to the C host from Lua functions.

Which is just about everything you need to know about function importing.

Let's get this new script started, which is called ® test _1. 1 ua, with the Exponent () function:

-- Manual |y conmputes exponents in the formof XY
function Exponent (X, Y)
-- First, let's just print out the paraneters
PrintStringList ("Calculating " .. X ..
" to the power of " .. Y);
-- Now nmanual |y conmpute the result
Exponent = 1;
if Y <O then
Exponent = -1; -- Just return -1
-- for all negative exponents
elseif Y ~= 0 then
for Power = 1, Y do
Exponent = Exponent * X
end
end
-- Return the final value to C
return Exponent;
end

To make the function more substantial, I've chosen to implement the exponent function with a manual loop that
multiplies 1 value by itself Y times. Of course, Lua provides a built-in exponent operator with *, so there'll be no
need for you to do this in practice. Regardless, it works by first setting Exponent to 1 and immediately checking
for some alternative cases. The first case is a negative power; which isn't supported by the function. Instead, -1 is
returned in all such cases. Next, you check to make sure you aren't raising X to the power of zero. If so, you only
need to return Exponent as is, because raising anything to zero yields 1. Lastly, you handle a valid exponent
with the loop described previously. The function concludes with the r et ur n keyword, which returns the final
exponent value to C.

You'll notice | start the function with a call to Pri nt Stri ngLi st () that prints a brief message. | do this just to
keep some variety going in the C/Lua interaction. Without a simple call to this function, the script would consist
entirely of Lua calls, which doesn't illustrate real-world scripting quite as well.

The other function & test_1.1 ua will provideis Mul tiplyString ():

-- "Multiplies" a string; in other words, repeats a string

-- a nunber of tines

function MiultiplyString (String, Factor)
-- As with the above function, print out the paraneters
PrintStringList ("Multiplying string \""

String .. "\" by " .. Factor);
-- Multiply the string
NewString = "";

for X =1, Factor do
NewString = NewString .. String;
end
-- Return the multiplied string to C
return NewString;
end

This function is even simpler than Exponent . All it does is create a variable called NewSt r i ng and assign it the
empty string. NewSt r i ng will contain the multipled string and is what you'll return to C. You then enter a simple
f or loop which repeatedly appends St ri ng to NewSt ri ng, once again using the . . operator.

@®

With these two functions saved in &' t est _1. | ua, you can return to your C host program and add the new code

necessary to test it.

The C side of things will get a little more complicated than it's been so far, but it's still nothing you can't handle.

http://www.books24x7.com/book/id 6929/viewer r.asp?bookid=6929& chunkid=786742672 9/13/2005

http://www.books24x7.com/book/id_6929/viewer_r.asp?bookid=6929&chunkid=786742672

Game Scripting Mastery - Books24x7.com - Referenceware for Professionals Page 26 of 38

The first thing to understand is that | ua_dofil e () will no longer immediately execute anything when

@ test_1.1uais loaded. This is because, unlike your previous script, there isn't any code in the global scope.
It's like writing a C program without mai n () . Because all code resides in functions, the Lua runtime environment
won't run anything until those functions are called. Because the script never calls any of these functions, in the
global scope, nothing ever executes. | ua_dofil e () has now effectively become a pure script loader, at least
conceptually (it will still attempt to run the script, even though nothing will happen).

Once the script is in memory, you can freely call any of its functions at will. Lua doesn't have a particularly high-
level mechanism for calling functions, so you'll have to do things fairly manually using the stack. Fortunately, it's
still a pretty straightforward process. Have a look.

Tip Remember, you can always optionally compile your scripts. Generally, it's easier to skip the compilation
step while you're initially coding and debugging them, but once they're finished, don't forget to run them
through | uac. 1 ua_dofile () is capable of loading both compiled and uncompiled scripts, so you
won't have to change your C host (except to change the filename to refer to the compiled version, if it's
different). Recall that compiled scripts load faster, are less error-prone, and are much less vulnerable to
hacking.

In Lua, functions can be thought of as globals, just as much as global variables can be thought of as globals. This
doesn't mean they're any more like variables than C functions are, but they can be referred to this way. The first
thing you need to do when calling a function is push a reference to the function onto the stack. Because functions
are simply another global, you can use | ua_get - gl obal () to do the job:

| ua_get gl obal (pLuaState, "FuncNanme");

Where FuncNare is a string value that corresponds to the name of the function within the script. Once the
function reference is on the stack, you need to push its parameters on as well. Parameters are pushed onto the
stack in left-to-right order. If FuncNane looks like this:

function FuncName (IntParam StringParam)

And we want to essentially call it like this:
FuncName (256, "Hello!");

The parameters would be pushed onto the stack like this:

| ua_pushnunber (pLuaState, 256);
| ua_pushstring (pLuaState, "Hello!");

Simple, eh? Now that the function call is represented on the stack in its entirety, you deliver the coup-de-grace by
calling lua_cal I (), which looks like this:

lua_call (lua_State * pLuaState, int ParanCount, int ResultCount);

This function will call whatever function was most recently pushed onto the stack, passing Par amCount
parameters and expecting Resul t Count results. Remember, due to the multiple assignment capabilities of Lua,
functions can return multiple values. If FuncName () accepts the two parameters listed previously and returns
one result, the callto | ua_cal I () would look like this:

lua_call (pLuaState, 2, 1);

Lastly, you need to know how to retrieve the result. The result (or results, depending on how many the function
returns) will be left on the stack. In your case, assuming FuncName () returned a single integer result, you can
use the following code to read it:

int iResult = (int) lua_tonunmber (pLuaState, 1);

| ua_pop (pLuaState, 1);

You use | ua_t onunmber () to convert the element at index 1 of the stack to a double-precision floating-point
value, and then cast it to an integer to store in the receiving variable. You know the return value is at index 1
because the function only returns one value. The stack is then cleaned up using | ua_pop () to remove the
return value and bring balance to the force.

That's everything there is to know about basic Lua function calls from the host application. Now that you know

what you're doing, let's go back to ® test _1.luaand try calling your Exponent () and Mul ti plyString
() functions.

printf ("\nLoading Script test _1.lua:\n\n");

http://www.books24x7.com/book/id 6929/viewer r.asp?bookid=6929& chunkid=786742672 9/13/2005

http://www.books24x7.com/book/id_6929/viewer_r.asp?bookid=6929&chunkid=786742672

Game Scripting Mastery - Books24x7.com - Referenceware for Professionals Page 27 of 38

lua_dofile (pLuaState, "test_1.lua");

/1 Call the exponent function

/1 Call lua_getglobal () to push the Exponent ()

/1 function onto the stack

| ua_get gl obal (pLuaState, "Exponent");

/1 Push two numeric paraneters

| ua_pushnunber (pLuaState, 2);

| ua_pushnunber (pLuaState, 13);

/1 Call the function with 2 paraneters and 1 result
lua_call (pLuaState, 2, 1);

/1 Pop the nuneric result fromthe stack and print it
int iResult = (int) lua_tonumber (pLuaState, 1);
| ua_pop (pLuaState, 1);

printf ("\tResult: %\n\n", iResult);

/1 Call the string multiplication function

/1 Push the MiultiplyString () function onto the stack
| ua_get gl obal (pLuaState, "MultiplyString");

/1 Push a string paraneter and the nuneric factor

| ua_pushstring (pLuaState, "Location");

| ua_pushnunber (pLuaState, 3);

/1 Call the function with 2 paraneters and 1 result
lua_call (pLuaState, 2, 1);

/1 Get the nultiplied string and print it

const char * pstrResult;

pstrResult = lua_tostring (pLuaState, 1);
lua_pop (pLuaState, 1);
printf ("\tResult: \"%\"", pstrResult);

Everything should pretty much speak for itself; all I've done here is directly applied the technique for calling Lua
functions described previously.

At this point, you've learned quite a bit; once you have the ability to call functions from both the host application
and the running script, along with parameters and return values, you're pretty much prepared for anything. Most of
the interaction between these two entities will lie in function calls. Because you've learned the language as well,
you should be familiar enough with Lua in general to get started with your own experiments and exploration. Of
course, you still need to get back to the bouncing alien head demo, but before that, there's one last detail of
interaction I'd like to show you.

Manipulating Global Lua Variables from C

The last real piece of the C/Lua integration puzzle I'm going to cover is the manipulation of a script's global
variables from C. Because globals are often used to control the program on a high level, there are times when
you can direct and manipulate the general behavior of your scripts with nothing more than the reading and writing
of globals. | personally prefer to keep everything function-based. Rather than directly editing a global variable, |
like to assign that global a pair of "setter and getter" functions, which allow me to alter the global's value indirectly
and subsequently more safely. However, you're ultimately the one who has to decide how your game's scripts will
work, so here's an extra technique for your arsenal in case you personally consider it a better way to go.

As you've seen to some extent, the | ua_get gl obal () and | ua_set gl obal () functions can be used to
read and write globals indirectly through the stack. Calling | ua_get gl obal () causes the value of the specified
global variable to be pushed onto the stack, whereas | ua_set gl obal () will pop the value off the top of the
stack into the specified global. So, for example, if you wanted to set the value of an integer global called X, you
simply do the following:

| ua_pushnunber (pLuaState, 256); -- Push 256 onto the stack

|l ua_setgl obal (pLuaState, "X"); -- Mve the top stack value into X

It's simply a matter of pushing the desired value onto the stack and using lua_set gl obal () to move it into
place. Likewise, the integer value of X could be read with the following code:

| ua_getgl obal (pLuaState, X); -- Push X's value onto the stack
int X=(int) lua_tonunber (pLuaState, 1); -- Gab the top stack val ue

http://www.books24x7.com/book/id 6929/viewer r.asp?bookid=6929& chunkid=786742672 9/13/2005

http://www.books24x7.com/book/id_6929/viewer_r.asp?bookid=6929&chunkid=786742672

Game Scripting Mastery - Books24x7.com - Referenceware for Professionals Page 28 of 38

All you need to do is push the given global's value onto the stack and then convert the value at that index to an
integer to store in a C variable. Once again, you're assuming that the stack is empty at the time of the call to
 ua_get gl obal (), which means the value will be placed at index 1. Because this may not always be the
case, be sure to use | ua_gettop () in practice to get the proper index of the stack’s top value. Also, remember
to clear the stack off when you're done; calls to | ua_get gl obal () should generally be followed by a call to

[ua_pop ().

Let's finish @ test _1.lua by adding some global variables to manipulate. Before the definition of your two
functions, let's add the following:

G obal I nt = 256;
G obal Fl oat = 2.71828;
G obal String = "I'm an obtuse man...";

This gives you three globals to work with, all of differing types. To get things started, let's just try reading their
values and printing them from C:

/1 Read some gl obal variables
printf ("\n\tReading global variables...\n\n");

/1l Read an integer global by pushing it onto the stack
| ua_get gl obal (pLuaState, "d oballnt");
printf ("\t\tdoballnt: %\n", (int)
| ua_tonunber (pLuaState, 1));
| ua_pop (pLuaState, 1);

/1l Read a float gl obal

| ua_get gl obal (pLuaState, "d obal Float");

printf ("\t\td obal Float: %\n", lua_tonunmber (pLuaState, 1));
| ua_pop (pLuaState, 1);

/1 Read a string gl obal

| ua_get gl obal (pLuaState, "d obal String");

printf ("\t\tdobal String: \"%\"\n", lua_tostring
(pLuaState, 1));

| ua_pop (pLuaState, 1);

Let's expand the example just a bit to write new values to the globals. Of course, you'll re-read them as well to
make sure the writes worked:

/1 Wite the gl obal variables and re-read them
printf ("\n\tWiting and re-reading the global variables...\n\n");

/! Wite and read the integer gl obal

| ua_pushnunber (pLuaState, 512);

| ua_setgl obal (pLuaState, "doballnt");

| ua_getgl obal (pLuaState, "doballnt");

printf ("\t\tdoballnt: %\n", (int) lua_tonunber
(pLuaState, 1));

lua_pop (pLuaState, 1);

/1 Wite and read the float gl obal

| ua_pushnunber (pLuaState, 3.14159);

| ua_setgl obal (pLuaState, "d obal Float");

| ua_getgl obal (pLuaState, "d obal Float");

printf ("\t\td obal Float: %\n", lua_tonunber (pLuaState, 1));

lua_pop (pLuaState, 1);

/1 Wite and read the string gl obal

| ua_pushstring (pLuaState, "...so |I'll try to be oblique.");

| ua_setgl obal (pLuaState, "d obal String");

| ua_getgl obal (pLuaState, "d obal String");

printf ("\t\tdobal String: \"%\"\n", lua_tostring (pLuaState, 1));
lua_pop (pLuaState, 1);

Done and done. The last thing to add to your C hostis a callto | ua_cl ose () to clean everything up:

http://www.books24x7.com/book/id 6929/viewer r.asp?bookid=6929& chunkid=786742672 9/13/2005

http://www.books24x7.com/book/id_6929/viewer_r.asp?bookid=6929&chunkid=786742672

Game Scripting Mastery - Books24x7.com - Referenceware for Professionals Page 29 of 38

lua_close (pLuaState);

Re-coding the Alien Demo in Lua

Aside from Vader, one last challenge remains. As | mentioned earlier, one of your exercises as you learn each
language will be to recode the bouncing alien head demo | showed you at the beginning of the chapter.

Initial Evaluations

As | mentioned earlier, all you really want to do with Lua is set the initial location, velocity, and spin direction of
each sprite with the script, as well as produce each frame of the demo by moving the sprites around the screen
and handling collisions.

The first thing you need to do is decide exactly what the script will be in charge of. Once you know this, you can
establish an appropriate host API— a set of functions that will give the script the capabilities it needs to carry out
its tasks.

Because your script will first be responsible for initializing the sprites, let's break down exactly what this entails:
= Set the initial X, Y coordinates to a random on-screen location.
m Set the initial X, Y velocity to random values.
m Set the initial spin direction to a random value (0 or 1).
m Store these values in a script-defined table, just as the original C version stored them in an array.

In short, you need to create a table within the script that will hold all of your bouncing alien heads; each element
of the array needs to describe its corresponding alien head in the same way that the Al i en struct did in the
hardcoded version. Obviously, table manipulation is built in to Lua, so you don't need to provide any functionality
for that from the host app. What you do need to provide, however, is a function that can generate random
numbers.

Once initialization is complete, your script won't be called again until the main loop of the application has begun.
Once this takes place, the script will be called once per frame. At each frame, the script will be in charge of the
following tasks:

= Blit the background image.

= Loop through each alien in the table and draw it at its current location.

= Blit the completed frame to the screen.

m Update the current frame of animation when the animation timer is active.

= Loop through each alien in the table once again to move it along its current path, and handle collisions as
they occur when the movement timer is active.

As you can see, the per-frame part of the script will be required to do a lot more things that Lua isn't directly
capable of, so the bulk of your host API will be geared towards these needs. Now that you know what you need,
let's lay these functions out.

The Host API

As you've seen, your primary requirements will be generating random numbers, blitting various bitmapped
images, and checking the status of timers. With these needs in mind, your host API will look like this:

i nt HAPI _Get RandonmNunber (lua_State * pLuaState);

int HAPI BlitBG (lua_State * pLuaState);

int HAPI BlitSprite (lua_State * pLuaState);

int HAPI BlitFrame (lua_State * pLuaState);

int HAPI GetTinerState (lua_State * pLuaState);

Notice that I've preceded each of the function names with HAPI _ (which of course stands for "Host API"). This

ensures that your host API functions and C-only functions are kept separate. This is just good practice in general
when scripting with any language.

http://www.books24x7.com/book/id 6929/viewer r.asp?bookid=6929& chunkid=786742672 9/13/2005

http://www.books24x7.com/book/id_6929/viewer_r.asp?bookid=6929&chunkid=786742672

Game Scripting Mastery - Books24x7.com - Referenceware for Professionals Page 30 of 38

As for the functions, they should be fairly self-explanatory, but I'll go over them just in case there's any ambiguity:

m HAPI _Get RandomNunber () accepts two numeric parameters; minimum and maximum values that define
a range from which a random number should be chosen and returned to the caller.

= HAPI _BlitBG () is asimple function that causes the background image to be blitted to the framebuffer. No
parameters are necessary.

m HAPI _BlitSprite () accepts parameters referring to an X, Y location and an index into the array of
frames of the spinning alien head animation.

= HAPI _BlitFranme () is another simple function that blits the framebuffer to the screen. Like HAPI _Bl i t BG
(), no parameters are needed.

s HAPI _Get TinerState () this function accepts a single numeric parameter containing an index that refers
to a specific timer. The state of that timer (1 for active, O for inactive) is returned to the caller.

With the host API laid out, let's take a look at the new structure of the host application.

The New Host Application

The landscape of the C side of things is quite a bit different now that you're offloading a good portion of the
demo's functionality to Lua. Gone is much of the original code, and in its place you find the host APl and a
number of calls to the Lua system. Speaking of the host API, its one of the biggest changes (or additions, | should
say). Have a look at the definitions for a few of the host API functions:

i nt HAPI _Get RandomNunber (lua_State * pLuaState)

{
/1l Read in paraneters
int iMn = GetlntParam(1);
int iMax = GetlntParam(2);
/! Return a random nunber between i Mn and i Max
ReturnNunmber ((rand () % (iMax + 1 - iMn)) +iMn);
return 1,

}

HAPI _Get RandonmNunber () does its job in two phases; first the parameters are read in, and then the result is

sent out. You start by declaring two integer variables, iMin and iMax, and initialize them with the values returned
from Get | nt Param (). Wait a second, " Get | nt Par am () " ? What was that?

Throughout the process of rewriting the alien head demo with Lua, there appeared a number of places where
macros that wrapped the calls to the actual Lua functions made things a lot cleaner. For example, when a host
API function wants to read in an integer parameter, it has to do something like this:

int iParam= (int) lua_tonunber (pLuaState, ilndex);

First of all, the function | ua_t onunber () itself isn't the most intuitive name, at least in this context. What the
function is really doing is reading the stack element at i | ndex and returning it as a numeric value. At least, that's
how things are working internally. All you need to worry about, however, is that the function is returning a
parameter. So right off the bat, wrapping it in a macro that provides a more descriptive hame will result in
improved code readability. Second, you have to cast the value the function returns to an i nt because Lua works
only with floating-point numerics. Having this cast clog up your code everywhere is just going to make things
messier, so the following macro:
#define GetlntParam [ndex) \

(int) lua_tonunber (g_pLuaState, Index);

just makes everything cleaner, more descriptive, and more concise. This is a trend that you'll find continues
throughout this section, so be prepared for a few more macros along these lines.

Where were we? Oh right, HAPI _Get RandonNumber () . Anyway, once you read in the i M n and i Max
parameters, you use another macro, Ret ur nNuner (), to return the result of a call to the standard C rand ()
function. Ret ur nNurrer () is very similar to Get | nt Par am () , except that it of course automates the process
of returning a numeric. Let's look at the code:
#define ReturnNumer(Num) \

| ua_pushnunber (g _pLuaState, Num);

http://www.books24x7.com/book/id 6929/viewer r.asp?bookid=6929& chunkid=786742672 9/13/2005

http://www.books24x7.com/book/id_6929/viewer_r.asp?bookid=6929&chunkid=786742672

Game Scripting Mastery - Books24x7.com - Referenceware for Professionals Page 31 of 38

Much nicer, eh? Another plus to these macros is that they save you from having to manually pass that Lua state
every time you make a Lua call as well. Of course, if you find yourself writing programs that maintain multiple
states (which you most likely will, because that's how you implement multiple scripts running at once), you'll lose
this luxury.

Overall, HAPI _Cet RandomNunber () illustrates an important point when discussing host APIs, because all it
really boiled down to was a simple wrapper for r and (). You may find that a large portion of your host API
functions don't provide any unique functionality of their own. Rather, they'll usually just wrap existing functions to
make the same functions your C program uses accessible to your scripts. Don't worry if you find yourself doing a
lot of this. At first it may seem like a lot of extra coding for nothing, but it's the only way to provide your scripts with
the functions they're ultimately going to need to be useful.

Let's check out one more host API function, and then I'll move on:
int HAPI BlitSprite (lua_State * pLuaState)

{
/! Read in paraneters
int ilndex = GetlntParam (1);
int iX = CGetlntParam(2);
int iY = CGetlntParam(3);
/1 Blit sprite
WBlitlmage (g AlienAnim|[ilndex], iX iY);
/1 Return nothing
return O;
}

Again, you see a similar process. First you read in three integer parameters with your handy Get | nt Par am ()
macro. You then pass those parameters directly to the Wrappuh function W Bl i t | mage (), which performs the
blit. Unlike HAPI _Get RandomNunber (), this function does not return anything to Lua, hence the return 0.

Moving along, I've created two helper functions for initializing and shutting down Lua in its entirety. | ni t Lua ()
allows you to open the Lua state and register all of the functions in your host API in one call:

void InitLua ()

{
/1 Open a new Lua state
g_pLuaState = lua_open (LUA STACK SIZE);
/!l Register your host APl with Lua
lua_register (g_pLuaState, "GetRandomNunber",
HAPI _Get RandonNunber) ;
lua_register (g pLuaState, "BlitBG', HAPI _BlIitBG);
lua_register (g pLuaState, "BlitSprite", HAPI BlitSprite);
lua_register (g pLuaState, "BlitFrane", HAPI _BlitFrame);
lua_register (g pLuaState, "GetTinerState", HAPI _GetTinerState);
}

Notice that the host API functions are not exposed to Lua scripts with the HAPI _ prefix. | did this because there
are so few functions in the script (as you'll soon see), that there's no need to differentiate. Of course, for large
script projects you may find it useful to precede your function names with HAPI _ on both the C and Lua sides of
things.

LUA_STACK_SI ZE is just a constant I've set to 1024. Nothing new.

I nitLua () of course has a matching ShutDownLua (), although this function is a bit of a waste, because it only
encapsulates one line:

voi d Shut DownLua ()

{

/1 Close Lua state
lua_close (g_pLuaState);

}

What can | say? I'm a bit of a neat-freak, so | ni t Lua () had to have a matching Shut Down () function,
whether it was necessary or not. :) It would just seem lopsided without one!

After the call to | ni t Lua (), you'll have a valid Lua state and your host API will be locked and loaded. It's here

http://www.books24x7.com/book/id 6929/viewer r.asp?bookid=6929& chunkid=786742672 9/13/2005

http://www.books24x7.com/book/id_6929/viewer_r.asp?bookid=6929&chunkid=786742672

Game Scripting Mastery - Books24x7.com - Referenceware for Professionals Page 32 of 38

where the scripting really begins. After all of your C-side initialization is done, you can initialize your alien head
sprites with one call:

Cal | LuaFunc ("Init", 0, 0);

That's right, another macro has reared its head. This one, aptly entitled Cal | LuaFunc (), calls Lua functions.
(Honestly, sometimes | wish my function names were less descriptive—it makes the explanations of what they
mean seem so anticlimactic.) Normally, because a Lua function call involves using | ua_get gl obal () to put
the function reference onto the stack, and then calling | ua_cal | (), this macro helps you out a bit by reducing
everything to a single line:
#def i ne Cal | LuaFunc(FuncName, Params, Results) \
{\

| ua_get gl obal (g_pLuaState, FuncName); \

lua_call (g_pLuaState, Parans, Results); \

}

Just pass it a string containing the function name, the number of parameters, and the number of results.

Anyway, the call to the Lua script was in reference to a function called I nit (), as you can see. Because |
haven't covered the contents of the script yet, just take this on faith.

Immediately following the call to your script's I ni t () function, the main loop of the demo begins, which is now
rather minimalist because its guts have been transferred to Lua:

/1 Start the main | oop
Mai nLoop

/1 Start the current loop iteration
Handl eLoop

{

/1 Let Lua handle the frane
Cal | LuaFunc ("Handl eFranme", 0, 0);
/1 Check for the Escape key and exit if it's down
if (WGetKeyState (WKEY_ESC))
WEXit ();

}

Another call to Cal | LuaFunc (), and another script function you haven't yet seen. This one is called
HandleFrame (), and naturally, handles the current frame by moving the sprites around. Once again, you'll see
these two functions in the next section.

That's it! In summary, the new host application works by first defining a series of functions that collectively form
the host API, and then initializes Lua by using | ua_open () to create a Lua state and register the host API's
functions. At this point, the Lua system is all ready to go, and the script's two functions are called. First Init () is
called to initialize the sprites, and Handl eLoop () is called once per frame to move them around. Because
you're done with the C stuff, you can now move on and actually see these two functions (among other things).

The Lua Script

)

The Lua script, which I've given the almost frighteningly creative filename = scri pt. | ua, is the only one you'll

need for this demo. In it, there are four main elements, as follows:
= An area for declaring constants.
m An area for declaring global variables.
m The first function, I nit ().
m The second (and last) function, Handl eFranme ().

As you can see, a script is structured in the same way a program is, something you'll discover in more and more
depth as your mastery of scripting unfolds. Although scripts and programs are indeed fundamentally and
technically different things; they're conceptually the same in most respects.

As | said, your script will consist mostly of a constant declaration section, a global variable declaration section,

http://www.books24x7.com/book/id 6929/viewer r.asp?bookid=6929& chunkid=786742672 9/13/2005

http://www.books24x7.com/book/id_6929/viewer_r.asp?bookid=6929&chunkid=786742672

Game Scripting Mastery - Books24x7.com - Referenceware for Professionals Page 33 of 38

and two functions. Notice again that there is no code in the global scope—in other words, code that resides
outside the functions—because it would be automatically executed by | ua_dofil e () and you don't
necessarily want anything to be run at that time. Rather, you'd like Lua to sim ply load the file into memory for you
and let it sit for you to reference later through function calls when you need to.

Tip Even though this script example has no code in the global scope, and thus no code that automatically
runs after the call to | ua_dofil e (), thisisn't always something to avoid. If your script has a block of
initialization code that you know you're only going to call once at the time the script is loaded, you might
as well put this code in the global scope so | ua_dofil e () automatically executes it for you.To put it in
C++ terms, think of it as a "constructor" for your script.

Remember, loading a script involves a decent amount of hard drive access, format validation, and possibly even
an entire compilation of the script (if your script is still in source code form). Scripts are no different than bitmaps
or sounds in this respect; their loading phase is costly and should only be done outside of speed-critical code (i.e.,
outside of your main loop). Calling | ua_dofil e () toexecute a script on a per-frame basis would be frame rate
homicide (which is only legal in Texas).

Getting back to the topic at hand, let's look at the script's constant declaration section:

ALl EN_COUNT = 12;

M N_VEL = 2;

MAX_VEL = 8;

ALI EN_W DTH = 128;

ALl EN_HEI GHT = 128;
HALF_ALIEN WDTH = ALIEN WDTH / 2;

HALF_ALI EN_HEI GHT ALI EN_HEI GHT / 2;
ALl EN_FRAVE_COUNT 32;

ALI EN_MAX_FRAME = ALI EN_FRAME_COUNT - 1;
ANI M_TI MER_| NDEX 0

MOVE_TI MER_| NDEX 1

The trick here is that Lua doesn't actually support constants. The best you can do is just pretend that it does by
declaring your constant values as global variables that are written out with typical CONSTANT_NOTATI ON (like
that). Lua just considers them typical globals, but at least your code will look the way you want it to. If you
compare this block of code to the original hardcoded C version, you'll find that I've pretty much just copied the
constant declarations and pasted them right into the Lua source.

Next up, let's have a look at your global variables
Aliens = {};
Curr Ani nfrane = 0;

Only two declarations needed here. First you create a table called Al i ens that will keep track of all of your
bouncing heads. Next, you create a simple numeric called Cur r Ani nFr ame, which keeps track of the current
frame of the alien head animation.

With your constants and globals out of the way, you have all the data you need. Now it's time for some code. Let's
have a look at the first of two functions this script will provide, I nit ():

function Init ()

-- Initialize the alien sprites

-- Loop through each alien in the table and initialize it

for CurrAlienlndex = 1, ALIEN COUNT do
-- Create a newtable to hold all of the alien's fields
local CurrAlien = {};
-- Set the X, Y location
CurrAlien. X = Get RandomNunber (0, 639 - ALIEN WDTH);
CurrAlien.Y = Get RandomNunber (0, 479 - ALIEN HEI GHT);
-- Set the X, Y velocity
CurrAl'i en. XVel Get RandomNunber (M N_VEL, MAX VEL);
CurrAlien. YVel Get RandomNunber (M N_VEL, MAX VEL);
-- Set the spin direction
CurrAlien. SpinDir = Get RandonmNunber (0, 2);
-- Copy the reference to the new alien into the table
Aliens [CurrAlienlndex] = CurrAlien;

end

http://www.books24x7.com/book/id 6929/viewer r.asp?bookid=6929& chunkid=786742672 9/13/2005

http://www.books24x7.com/book/id_6929/viewer_r.asp?bookid=6929&chunkid=786742672

Game Scripting Mastery - Books24x7.com - Referenceware for Professionals Page 34 of 38

end

As you should remember, this is the function that's called by the following line back in the host application:
Cal | LuaFunc ("Init", 0, 0);

So, as soon as this line of code is hit, the I ni t () function listed previously will be run.

The function really just has one job: initialize the array of bouncing alien heads. Just like in the original pure C
version, this means giving each head a random location on-screen, a random velocity, and a random spin
direction. Naturally, this is facilitated by a f or loop.

To actually store the alien head demo, you need to store a smaller table at each index of the Al i ens table. This
is because there are a number of pieces of information that each head has to keep track of. To put this another
way, think of it like a multidimensional array, or an array of st r uct sin C. Each index of the table has another
table (or rather, a reference to another table) that holds that particular element's information, like its X, Y location
and its velocity. Check out Figure 6.13 for a visual representation of this.

Aliens [}

Vel
Yvel
spinDir

183 | 20 2 =

=

183 | 20 2 = a

o

183 | 20 2 = a

Figure 6.13: Each element of the Al i ens table contains another table that holds that element's specific
data.

All'in all this is a simple concept, but there is one snag that can really trip you up if you're not ready for it. As I've
mentioned before, it's important to think of tables in Luas references, rather than values. Because of this,
assigning a table to an element of another table in a loop, like this:

Aliens [CurrAlienlndex]| = CurrAlien;

means that Ali ens [CurrAli enl ndex] only receives a reference to the Curr Al i en table, not the values
themselves. So, at the next iteration of the loop, when you put new values into Cur r Al i en and assign it to the
next index of Al i ens, you'll find that both the current element as well as the previous element seem to suddenly
have the same values. This is due to the fact that both elements have been given a reference to Curr Al i en, so
as soon as you change the values for the second element of the table in the next iteration of the loop, the first
element will seem to inexplicably change along with it. Figure 6.14 illustrates this relationship.

http://www.books24x7.com/book/id 6929/viewer r.asp?bookid=6929& chunkid=786742672 9/13/2005

http://www.books24x7.com/book/id_6929/viewer_r.asp?bookid=6929&chunkid=786742672

Game Scripting Mastery - Books24x7.com - Referenceware for Professionals Page 35 of 38

=

Aliens (} - = E
= = o

- = s =]

w3z 2| -1 | 0

183 | 20 2 =]

183 | 20 2 =k a

Figure 6.14: Two elements of Al i ens point to the same table, and there fore reflect the changes made to
one another.

To solve this problem, you simply start the loop with this line:
local CurrAlien = {};

Assigning {} to Curr Al i en forces Lua to allocate a new table and therefore provide a fresh, unused reference.
You can then fill the values of this instance of Cur r Al i en and freely assign it to the next element of Al i ens,
without worrying about overwriting the values you set in the last iteration. It's a simple problem with a simple
solution, but left unchecked this little detail can cause logic errors that truly wreak havoc. :)

The rest of the alien head initialization loop is pretty much what you would expect; each element of Curr Al i en is
set to a random value, using the Get RandonmNunber () function that the previously discussed host API
provides. Once this loop completes, | nit () is finished and the global Al i ens table contains a record of every
bouncing alien head.The script is now fully prepared to enter the main loop, which will call Handl eFrane () at
each iteration. Let's have a look at this function:

function Handl eFranme ()
-- Blit the background inmage
BlitBG ();
-- Blit each sprite and nove it along its path
for CurrAlienlndex = 1, ALIEN COUNT do
-- Get the X, Y location
local X = Aliens [CurrAlienlndex].X
local Y = Aliens [CurrAlienlndex].Y,;
-- Get the spin direction and determ ne
-- the final frame for this sprite
-- based on it.
| ocal SpinDir = Aliens [CurrAlienlndex].SpinDir;
if SpinDir == 1 then
Fi nal Ani nFranme = ALI EN_MAX FRAME - Curr Ani nfFr ane;
el se
Fi nal Ani nFrame = Curr Ani nfr ane;
end
-- Blit the sprite
BlitSprite (Final AninFrame, X, Y);
end
-- Blit the conpleted frane to the screen
BlitFrame ();

-- Increment the current frane in the ani mation
if GetTinmerState (ANNM TIMER INDEX) == 1 then
Curr Ani nFrame = CurrAni nFranme + 1;

i f CurrAni nFrame >= ALI EN_FRAME_COUNT t hen
Curr Ani nFrame = 0;
end

http://www.books24x7.com/book/id 6929/viewer r.asp?bookid=6929& chunkid=786742672 9/13/2005

http://www.books24x7.com/book/id_6929/viewer_r.asp?bookid=6929&chunkid=786742672

Game Scripting Mastery - Books24x7.com - Referenceware for Professionals Page 36 of 38

end
-- Mwve the sprites along their paths
if GetTinerState (MOVE_TIMER INDEX) == 1 then
for CurrAlienlndex = 1, ALIEN COUNT do
-- Get the X, Y location
local X = Aliens [CurrAlienlndex].X
local Y = Aliens [CurrAlienlndex].Y,;
-- CGet the X, Y velocities
local XVel = Aliens [CurrAlienlndex].XVel;
local YVel = Aliens [CurrAlienlndex].YVel;
-- Increment the paths of the aliens
X = X + Xvel;
Y =Y + YVel;
Aliens [CurrAlienlndex]1.X = X;
Aliens [CurrAlienlndex 1.Y =Y;
-- Check for wall collisions
if X > 640 - HALF_ALIEN WDTH or X <
-HALF_ALI EN_W DTH t hen
XVel = -XVel;
end
if Y > 480 - HALF_ALIEN WDTH or Y <
-HALF_ALI EN_W DTH t hen
YVel = -YVel;
end
Aliens [CurrAlienlndex].XVel = XVel;
Aliens [CurrAlienlndex].YVel = YVel;
end
end

end

Quite a bit larger than I nit (), eh? As you can see, there's a decent amount of logic to attend to here, so let's
knock it out piece by piece.

The first step is easy; you make a single call to Bl i t BG (), a host API function that slaps the background image

into the framebuffer. This overwrites the last frame's contents and gives you a fresh slate on which to draw the
new frame.

You then use a f or loop to iterate through each alien in the bouncing alien head array, saving the X, Y location
and final animation frame into local variables which are passed to host API function Bl i t Sprite () toputiton
the screen. Notice that you don't necessarily use the global Cur r Ani nFr ane as the frame passed to
BlitSprite (). Thisis because each head has its own spinning direction, which may be forwards or
backwards. If it's forwards, you can use Cur r Ani nFr ame as-is, but you must subt ract Cur r Ani nFr ane from
ALI EN_MAX_FRAME if it's backwards. This lets certain sprites cycle through the animation in one direction,
whereas others cycle through it the other way.

At this point, you've drawn the background image and each alien sprite. All that's left to complete this frame is to
call Bl i t Frame (), another host API function, which blasts the framebuffer to the screen. The graphical aspect

of the current frame has been taken care of, but now you need to handle the logic. This means moving the alien
heads along their paths and checking for collisions, among other things.

The first thing to do after blitting the new frame to the screen is update Cur r Ani nFr ane. You do this by
incrementing the variable, and resetting it to zero if the increment pushes it past ALI EN_MAX_FRAME. Of course,
you want to perpetuate the animation at a fixed speed; if you incremented Cur r Ani nFr anme every frame, the
animation might move too quickly on faster systems. So, you've synchronized the speed of the animation with a
timer that was created in the host application. This timer ticks at a certain speed, which means you have to use
Get Ti mer St at e () at each frame to see whether it's time to move the animation along. This ensures a more
uniform speed across the board, regardless of frame rate.

This takes you to the last part of the Handl eFrame () function, which is the movement of each sprite and the
collision check. Like the animation, the movement of the sprites is also synched to a timer, which means you
make another call to Cet Ti ner St at e () . Assuming the timer has completed another tick, you start by saving
the X, Y coordinates of the sprite and the X, Y velocities to local variables. You then add the velocities to the X, Y
coordinates to find the next position along the path the alien should move to. You put these values back into the

http://www.books24x7.com/book/id 6929/viewer r.asp?bookid=6929& chunkid=786742672 9/13/2005

http://www.books24x7.com/book/id_6929/viewer_r.asp?bookid=6929&chunkid=786742672

Game Scripting Mastery - Books24x7.com - Referenceware for Professionals Page 37 of 38

Al'i ens array and then perform the collision check. If the new location of the sprite is above or below the extents
of the screen, you reverse the Y velocity to simulate the bounce. The same goes for violations of the horizontal
extents of the screen, which cause a reversal of the X velocity. Once these two checks have been performed, the
X and Y velocities are placed back into the Al i ens table as well and the movement of the sprites is complete.

You've now completed the script, which means the only thing left to do is sit back and watch it take off. Check out
the demo on the accompanying CD. On the surface it looks identical to the hard-coded version, but there are two
important differences. First, you may notice a slight speed difference. This is a valuable lesson—don't forget that
despite all of its advantages, scripting is still noticably slower than native executable code in most situa tions.
Second, and more obviously, remem ber that even though you've compiled the host application, the script itself
can be updated and changed as much as you want without recompiling the executable.

Note Remember, compiling your scripts with | uac is always recommended. Now that you've finished working

on the Lua demo, you might as well compile @ script. | ua for future use.As I've said, | ua_dofile
() just needs the filename of the compiled version, and will handle the rest transparently. It costs you
nothing, and in return you get faster script load times (although it's highly unlikely that you'll notice a
difference in this particular example). Either way, it's a good habit to start early.

Because this is the whole reason you perhaps got into this crazy scripting business in the first place, | suggest
you take the time to try changing the general behavior of the script and watch the executable change with it. As a
challenge, try adding a gravity constant to the bouncing movement of the heads; perhaps something that will
slowly cause them to fall to the ground. Once they're all at the bottom of the screen, reverse the polarity and
watch them "fall" back up. This shouldn't take too much effort to implement given what you've done so far, and it
will be a great way to experience first-hand the power scripts can have over their compiled host applications.
Maybe you can create some trig functions in the host API and use them to move the gravity constant along a
sinusoid.

Advanced Lua Topics

I've covered the core of the language as well as most of the details you'll need for integration. This should be
more than sufficient for most of your game scripting needs, but if you're anything like me, you can't sleep at night
until you've learned everything. And if you're anything like | am tonight, you won't sleep at all because you're all
hopped up on Red Bull and are too busy running laps on the roof. So, allow me to discuss a few advanced topics
that enhance Lua's power but are beyond the scope of this book:

m Tag Methods. One of Lua's defining features is the capability for it to extend itself. This is implemented
partially through a feature called tag methods, which are functions defined by the script that are assigned to
key points during execution of Lua code. Because these functions are called automatically by the Lua
runtime, the programmer can use them to extend or alter the behavior of said code.

m Complex Data Structures. Lua only directly supports the table structure, but as you've seen, tables can not
only contain any value, but can also contain references to other tables as well as functions. You can probably
imagine how these capabilities lend themselves to the construction of higher-level data structures.

m Object-Oriented Programming. This is almost an extension of the last topic, but Lua is capable of
implementing classes and objects through clever use of tables. Remember, tables can include function
references, which gives them the capability to simulate constructors, destructors, and methods. Because
functions can return table references as well, constructor functions can create tables to certain specifications
automatically. Oh, the possibilities!

m The Lua Standard Library. Lua also comes with a useful standard library, much like the one that comes
with C. This library is broken into APlIs for string manipulation, I/O, math, and more. Becoming familiar with
this library can greatly expand the power and flexibility of your scripts, so it's definitely worth looking into.

Also, in case you were wondering, this is why your Lua distribution comes with @ |ualib.hand

@ lualib.lib. These extra files implement the standard library.
Web Links

For more general information on Lua, as well as the Lua user community, check out the following links. These are
also great places to begin your investigation of the advanced topics described previously:

m The Official Lua Web Site: htt p://ww. | ua. or g/ . This is the official source for Lua documentation and
distributions. Check here for updates on the language and system, as well as general news.

http://www.books24x7.com/book/id 6929/viewer r.asp?bookid=6929& chunkid=786742672 9/13/2005

http://www.lua.org/
http://www.books24x7.com/book/id_6929/viewer_r.asp?bookid=6929&chunkid=786742672

Game Scripting Mastery - Books24x7.com - Referenceware for Professionals Page 38 of 38

m |ua-users.org: http://wwv. | ua- users. or g/ . A gathering of a number of Lua users, offering a focused
selection of content and resources.

m |ua-l: Lua Users Mailing List: htt p: // gr oups. yahoo. conf gr oup/ | ua-1/ . The lua-l Yahoo Group is a
gathering of a number of Lua developers who discuss Lua news and ask/answer questions. It's a frequently
evolving source of up-to-date Lua information and a good place to familiarize yourself with the language itself
and its real-world applications.

Previous & MNext

Use of content on this site is expressly subject to the restrictions set forth in the Membership Agreement.
Books24x7 and Referenceware are registered trademarks of Books24x7, Inc.
Copyright © 1999-2005 Books24x7, Inc. - Feedback | Privacy Policy (updated 03/2005)

http://www.books24x7.com/book/id 6929/viewer r.asp?bookid=6929& chunkid=786742672 9/13/2005

http://www.lua-users.org/
http://groups.yahoo.com/group/lua-l/
http://www.books24x7.com/book/id_6929/viewer_r.asp?bookid=6929&chunkid=786742672

